

i

About the Tutorial

Assembly language is a low-level programming language for a computer or other

programmable device specific to a particular computer architecture in contrast to most

high-level programming languages, which are generally portable across multiple

systems. Assembly language is converted into executable machine code by a utility
program referred to as an assembler like NASM, MASM, etc.

Audience

This tutorial has been designed for those who want to learn the basics of assembly

programming from scratch. This tutorial will give you enough understanding on assembly
programming from where you can take yourself to higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of Computer

Programming terminologies. A basic understanding of any of the programming languages

will help you in understanding the Assembly programming concepts and move fast on
the learning track.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written
consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our
website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ·· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ··· i

Table of Contents ·· ii

1. ASSEMBLY ─ INTRODUCTION ··· 1

What is Assembly Language? ·· 1

Advantages of Assembly Language·· 1

Basic Features of PC Hardware ·· 1

Binary Number System ·· 2

Hexadecimal Number System ··· 2

Binary Arithmetic ·· 4

Addressing Data in Memory ·· 5

2. ASSEMBLY ─ ENVIORNMENT SETUP ·· 7

Try it Option Online ··· 7

Local Environment Setup··· 7

Installing NASM ··· 8

3. ASSEMBLY ─ BASIC SYNTAX ··· 9

The data Section ··· 9

The bss Section ··· 9

The text section ·· 9

Comments ··· 9

Assembly Language Statements ·· 10

Syntax of Assembly Language Statements ·· 10

The Hello World Program in Assembly ·· 10

iii

Compiling and Linking an Assembly Program in NASM·· 11

4. ASSEMBLY ─ MEMORY SEGMENTS ·· 12

Memory Segments ·· 12

5. ASSEMBLY ─ REGISTERS ··· 14

Processor Registers ··· 14

Data Registers ··· 14

Pointer Registers ··· 15

Index Registers ·· 16

Control Registers ··· 16

Segment Registers ··· 17

6. ASSEMBLY ─ SYSTEM CALLS ··· 19

Linux System Calls ··· 19

7. ASSEMBLY ─ ADDRESSING MODES ·· 22

Register Addressing ··· 22

Immediate Addressing ·· 22

Direct Memory Addressing ·· 23

Direct-Offset Addressing ··· 23

Indirect Memory Addressing ··· 23

The MOV Instruction ··· 24

8. ASSEMBLY ─ VARIABLES ··· 26

Allocating Storage Space for Initialized Data ··· 26

Allocating Storage Space for Uninitialized Data ··· 27

Multiple Definitions ·· 28

Multiple Initializations ·· 28

iv

9. ASSEMBLY ─ CONSTANTS ·· 29

The EQU Directive ··· 29

The %assign Directive ·· 30

The %define Directive ··· 31

10. ASSEMBLY ─ ARITHMETIC INSTRUCTIONS ··· 32

The INC Instruction·· 32

The DEC Instruction ··· 32

The ADD and SUB Instructions ·· 33

The MUL/IMUL Instruction ·· 37

The DIV/IDIV Instructions ·· 39

11. ASSEMBLY ─ LOGICAL INSTRUCTIONS ·· 42

The AND Instruction ·· 42

The OR Instruction ·· 44

The XOR Instruction ·· 45

The TEST Instruction ·· 45

The NOT Instruction ·· 46

12. ASSEMBLY ─ CONDITIONS ··· 47

CMP Instruction ·· 47

Conditional Jump ·· 48

13. ASSEMBLY ─ LOOPS ··· 52

14. ASSEMBLY ─ NUMBERS ··· 54

ASCII Representation ·· 55

BCD Representation ·· 56

v

15. ASSEMBLY ─STRINGS ··· 59

String Instructions ··· 59

Repetition Prefixes ·· 60

16. ASSEMBLY ─ARRAYS ·· 62

17. ASSEMBLY ─ PROCEDURES ·· 65

Stacks Data Structure ·· 66

18. ASSEMBLY ─ RECURSION ··· 69

19. ASSEMBLY ─ MACROS ·· 71

20. ASSEMBLY ─ FILE MANAGEMENT ·· 73

File Descriptor ··· 73

File Pointer ·· 73

File Handling System Calls ··· 73

Creating and Opening a File ·· 74

Opening an Existing File ·· 74

Reading from a File ··· 74

Writing to a File ··· 75

Closing a File ··· 75

Updating a File ·· 75

21. ASSEMBLY ─ MEMORY MANAGEMENT ··· 78

Assembly Programming

1

What is Assembly Language?

Each personal computer has a microprocessor that manages the computer's arithmetical,
logical, and control activities.

Each family of processors has its own set of instructions for handling various operations

such as getting input from keyboard, displaying information on screen, and performing

various other jobs. These set of instructions are called 'machine language instructions'.

A processor understands only machine language instructions, which are strings of 1's

and 0's. However, machine language is too obscure and complex for using in software

development. So, the low-level assembly language is designed for a specific family of

processors that represents various instructions in symbolic code and a more

understandable form.

Advantages of Assembly Language

Having an understanding of assembly language makes one aware of:

 How programs interface with OS, processor, and BIOS;

 How data is represented in memory and other external devices;

 How the processor accesses and executes instruction;

 How instructions access and process data;

 How a program accesses external devices.

Other advantages of using assembly language are:

 It requires less memory and execution time;

 It allows hardware-specific complex jobs in an easier way;

 It is suitable for time-critical jobs;

 It is most suitable for writing interrupt service routines and other memory
resident programs.

Basic Features of PC Hardware

The main internal hardware of a PC consists of processor, memory, and registers.

Registers are processor components that hold data and address. To execute a program,

the system copies it from the external device into the internal memory. The processor
executes the program instructions.

The fundamental unit of computer storage is a bit; it could be ON (1) or OFF (0). A

group of nine related bits makes a byte, out of which eight bits are used for data and the

last one is used for parity. According to the rule of parity, the number of bits that are ON
(1) in each byte should always be odd.

1. Assembly ─ Introduction

Assembly Programming

2

So, the parity bit is used to make the number of bits in a byte odd. If the parity is even,

the system assumes that there had been a parity error (though rare), which might have
been caused due to hardware fault or electrical disturbance.

The processor supports the following data sizes:

 Word: a 2-byte data item

 Doubleword: a 4-byte (32 bit) data item

 Quadword: an 8-byte (64 bit) data item

 Paragraph: a 16-byte (128 bit) area

 Kilobyte: 1024 bytes

 Megabyte: 1,048,576 bytes

Binary Number System

Every number system uses positional notation, i.e., each position in which a digit is

written has a different positional value. Each position is power of the base, which is 2 for
binary number system, and these powers begin at 0 and increase by 1.

The following table shows the positional values for an 8-bit binary number, where all bits

are set ON.

Bit value 1 1 1 1 1 1 1 1

Position value

as a power of

base 2

128 64 32 16 8 4 2 1

Bit number 7 6 5 4 3 2 1 0

The value of a binary number is based on the presence of 1 bits and their positional

value. So, the value of a given binary number is:

1 + 2 + 4 + 8 +16 + 32 + 64 + 128 = 255

which is same as 28 - 1.

Hexadecimal Number System

Hexadecimal number system uses base 16. The digits in this system range from 0 to 15.

By convention, the letters A through F is used to represent the hexadecimal digits
corresponding to decimal values 10 through 15.

Hexadecimal numbers in computing is used for abbreviating lengthy binary

representations. Basically, hexadecimal number system represents a binary data by

dividing each byte in half and expressing the value of each half-byte. The following table
provides the decimal, binary, and hexadecimal equivalents:

Assembly Programming

3

Decimal number Binary representation Hexadecimal representation

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Assembly Programming

4

To convert a binary number to its hexadecimal equivalent, break it into groups of 4

consecutive groups each, starting from the right, and write those groups over the
corresponding digits of the hexadecimal number.

Example: Binary number 1000 1100 1101 0001 is equivalent to hexadecimal - 8CD1

To convert a hexadecimal number to binary, just write each hexadecimal digit into its 4-
digit binary equivalent.

Example: Hexadecimal number FAD8 is equivalent to binary - 1111 1010 1101 1000

Binary Arithmetic

The following table illustrates four simple rules for binary addition:

(i) (ii) (iii) (iv)

1

0 1 1 1

+0 +0 +1 +1

=0 =1 =10 =11

Rules (iii) and (iv) show a carry of a 1-bit into the next left position.

Example

Decimal Binary

60 00111100

+42 00101010

102 01100110

A negative binary value is expressed in two's complement notation. According to this

rule, to convert a binary number to its negative value is to reverse its bit values and add

1.

Assembly Programming

5

Example

Number 53 00110101

Reverse the bits 11001010

Add 1 1

Number -53 11001011

To subtract one value from another, convert the number being subtracted to two's

complement format and add the numbers.

Example

Subtract 42 from 53.

Number 53 00110101

Number 42 00101010

Reverse the bits of 42 11010101

Add 1 1

Number -42 11010110

53 - 42 = 11 00001011

Overflow of the last 1 bit is lost.

Addressing Data in Memory

The process through which the processor controls the execution of instructions is

referred as the fetch-decode-execute cycle or the execution cycle. It consists of

three continuous steps:

 Fetching the instruction from memory

 Decoding or identifying the instruction

 Executing the instruction

The processor may access one or more bytes of memory at a time. Let us consider a

hexadecimal number 0725H. This number will require two bytes of memory. The high-
order byte or most significant byte is 07 and the low-order byte is 25.

Assembly Programming

6

The processor stores data in reverse-byte sequence, i.e., a low-order byte is stored in a

low memory address and a high-order byte in high memory address. So, if the processor

brings the value 0725H from register to memory, it will transfer 25 first to the lower
memory address and 07 to the next memory address.

x: memory address

When the processor gets the numeric data from memory to register, it again reverses

the bytes. There are two kinds of memory addresses:

 Absolute address – a direct reference of specific location.

 Segment address (or offset) – starting address of a memory segment with the
offset value.

Assembly Programming

7

Try it Option Online

We already have set up NASM assembler to experiment with Assembly programming

online, so that you can execute all the available examples online at the same time when

you are doing your theory work. This gives you confidence in what you are reading and

to check the result with different options. Feel free to modify any example and execute it
online.

Try the following example using our online compiler option available at

http://www.compileonline.com/

section .text

 global _start ;must be declared for linker (ld)

_start: ;tells linker entry point

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'Hello, world!', 0xa ;our dear string

len equ $ - msg ;length of our dear string

For most of the examples given in this tutorial, you will find a Try it option in our

website code sections at the top right corner that will take you to the online compiler. So
just make use of it and enjoy your learning.

Local Environment Setup

Assembly language is dependent upon the instruction set and the architecture of the

processor. In this tutorial, we focus on Intel 32 processors like Pentium. To follow this

tutorial, you will need:

 An IBM PC or any equivalent compatible computer

 A copy of Linux operating system

 A copy of NASM assembler program

2. Assembly ─ Enviornment Setup

http://www.compileonline.com/

Assembly Programming

8

There are many good assembler programs such as:

 Microsoft Assembler (MASM)

 Borland Turbo Assembler (TASM)

 The GNU assembler (GAS)

We will use the NASM assembler, as it is:

 Free. You can download it from various web sources.

 Well-documented and you will get lots of information on net.

 Could be used on both Linux and Windows.

Installing NASM

If you select "Development Tools" while installing Linux, you may get NASM installed

along with the Linux operating system and you do not need to download and install it

separately. For checking whether you already have NASM installed, take the following
steps:

1. Open a Linux terminal.

2. Type whereis nasm and press ENTER.

3. If it is already installed, then a line like, nasm: /usr/bin/nasm appears. Otherwise,

you will see just nasm:, then you need to install NASM.

To install NASM, take the following steps:

1. Check The netwide assembler (NASM) website for the latest version.

2. Download the Linux source archive nasm-X.XX.ta.gz, where X.XX is the NASM
version number in the archive.

3. Unpack the archive into a directory which creates a subdirectory nasm-X. XX.

4. cd to nasm-X. XX and type ./configure . This shell script will find the best C

compiler to use and set up Makefiles accordingly.

5. Type make to build the nasm and ndisasm binaries.

6. Type make install to install nasm and ndisasm in /usr/local/bin and to install the

man pages.

This should install NASM on your system. Alternatively, you can use an RPM distribution
for the Fedora Linux. This version is simpler to install, just double-click the RPM file.

Assembly Programming

9

An assembly program can be divided into three sections:

 The data section,

 The bss section, and

 The text section.

The data Section

The data section is used for declaring initialized data or constants. This data does not

change at runtime. You can declare various constant values, file names, or buffer size,
etc., in this section.

The syntax for declaring data section is:

section .data

The bss Section

The bss section is used for declaring variables. The syntax for declaring bss section is:

section .bss

The text section

The text section is used for keeping the actual code. This section must begin with the

declaration global _start, which tells the kernel where the program execution begins.

The syntax for declaring text section is:

section .text

 global _start

_start:

Comments

Assembly language comment begins with a semicolon (;). It may contain any printable
character including blank. It can appear on a line by itself, like:

; This program displays a message on screen

or, on the same line along with an instruction, like:

add eax ,ebx ; adds ebx to eax

3. Assembly ─ Basic Syntax

Assembly Programming

10

Assembly Language Statements

Assembly language programs consist of three types of statements:

 Executable instructions or instructions,

 Assembler directives or pseudo-ops, and

 Macros.

The executable instructions or simply instructions tell the processor what to do. Each

instruction consists of an operation code (opcode). Each executable instruction

generates one machine language instruction.

The assembler directives or pseudo-ops tell the assembler about the various aspects

of the assembly process. These are non-executable and do not generate machine
language instructions.

Macros are basically a text substitution mechanism.

Syntax of Assembly Language Statements

Assembly language statements are entered one statement per line. Each statement

follows the following format:

[label] mnemonic [operands] [;comment]

The fields in the square brackets are optional. A basic instruction has two parts, the first

one is the name of the instruction (or the mnemonic), which is to be executed, and the
second are the operands or the parameters of the command.

Following are some examples of typical assembly language statements:

INC COUNT ; Increment the memory variable COUNT

MOV TOTAL, 48 ; Transfer the value 48 in the

 ; memory variable TOTAL

ADD AH, BH ; Add the content of the

 ; BH register into the AH register

AND MASK1, 128 ; Perform AND operation on the

 ; variable MASK1 and 128

ADD MARKS, 10 ; Add 10 to the variable MARKS

MOV AL, 10 ; Transfer the value 10 to the AL register

The Hello World Program in Assembly

The following assembly language code displays the string 'Hello World' on the screen:

section .text

 global _start ;must be declared for linker (ld)

_start: ;tells linker entry point

Assembly Programming

11

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'Hello, world!', 0xa ;our dear string

len equ $ - msg ;length of our dear string

When the above code is compiled and executed, it produces the following result:

Hello, world!

Compiling and Linking an Assembly Program in NASM

Make sure you have set the path of nasm and ld binaries in your PATH environment

variable. Now, take the following steps for compiling and linking the above program:

1. Type the above code using a text editor and save it as hello.asm.

2. Make sure that you are in the same directory as where you saved hello.asm.

3. To assemble the program, type nasm -f elf hello.asm

4. If there is any error, you will be prompted about that at this stage. Otherwise, an
object file of your program named hello.o will be created.

5. To link the object file and create an executable file named hello, type ld -m

elf_i386 -s -o hello hello.o

6. Execute the program by typing ./hello

If you have done everything correctly, it will display ‘Hello, world!’ on the screen.

Assembly Programming

12

We have already discussed the three sections of an assembly program. These sections
represent various memory segments as well.

Interestingly, if you replace the section keyword with segment, you will get the same
result. Try the following code:

segment .text ;code segment

 global _start ;must be declared for linker

_start: ;tell linker entry point

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

segment .data ;data segment

msg db 'Hello, world!',0xa ;our dear string

len equ $ - msg ;length of our dear string

When the above code is compiled and executed, it produces the following result:

Hello, world!

Memory Segments

A segmented memory model divides the system memory into groups of independent

segments referenced by pointers located in the segment registers. Each segment is used

to contain a specific type of data. One segment is used to contain instruction codes,

another segment stores the data elements, and a third segment keeps the program
stack.

In the light of the above discussion, we can specify various memory segments as:

 Data segment - It is represented by .data section and the .bss. The .data

section is used to declare the memory region, where data elements are stored for

the program. This section cannot be expanded after the data elements are
declared, and it remains static throughout the program.

The .bss section is also a static memory section that contains buffers for data to
be declared later in the program. This buffer memory is zero-filled.

4. Assembly ─ Memory Segments

Assembly Programming

13

 Code segment - It is represented by .text section. This defines an area in

memory that stores the instruction codes. This is also a fixed area.

 Stack - This segment contains data values passed to functions and procedures

within the program.

Assembly Programming

14

Processor operations mostly involve processing data. This data can be stored in memory

and accessed from thereon. However, reading data from and storing data into memory

slows down the processor, as it involves complicated processes of sending the data

request across the control bus and into the memory storage unit and getting the data
through the same channel.

To speed up the processor operations, the processor includes some internal memory
storage locations, called registers.

The registers store data elements for processing without having to access the memory. A

limited number of registers are built into the processor chip.

Processor Registers

There are ten 32-bit and six 16-bit processor registers in IA-32 architecture. The
registers are grouped into three categories:

 General registers,

 Control registers, and

 Segment registers.

The general registers are further divided into the following groups:

 Data registers,

 Pointer registers, and

 Index registers.

Data Registers

Four 32-bit data registers are used for arithmetic, logical, and other operations. These
32-bit registers can be used in three ways:

 As complete 32-bit data registers: EAX, EBX, ECX, EDX.

 Lower halves of the 32-bit registers can be used as four 16-bit data registers: AX,
BX, CX and DX.

 Lower and higher halves of the above-mentioned four 16-bit registers can be
used as eight 8-bit data registers: AH, AL, BH, BL, CH, CL, DH, and DL.

5. Assembly ─ Registers

Assembly Programming

15

Some of these data registers have specific use in arithmetical operations.

AX is the primary accumulator; it is used in input/output and most arithmetic

instructions. For example, in multiplication operation, one operand is stored in EAX or AX

or AL register according to the size of the operand.

BX is known as the base register, as it could be used in indexed addressing.

CX is known as the count register, as the ECX, CX registers store the loop count in

iterative operations.

DX is known as the data register. It is also used in input/output operations. It is also

used with AX register along with DX for multiply and divide operations involving large
values.

Pointer Registers

The pointer registers are 32-bit EIP, ESP, and EBP registers and corresponding 16-bit
right portions IP, SP, and BP. There are three categories of pointer registers:

 Instruction Pointer (IP) - The 16-bit IP register stores the offset address of the

next instruction to be executed. IP in association with the CS register (as CS:IP)
gives the complete address of the current instruction in the code segment.

 Stack Pointer (SP) - The 16-bit SP register provides the offset value within the

program stack. SP in association with the SS register (SS:SP) refers to be current
position of data or address within the program stack.

 Base Pointer (BP) - The 16-bit BP register mainly helps in referencing the

parameter variables passed to a subroutine. The address in SS register is

combined with the offset in BP to get the location of the parameter. BP can also

be combined with DI and SI as base register for special addressing.

Assembly Programming

16

Index Registers

The 32-bit index registers, ESI and EDI, and their 16-bit rightmost portions, SI and DI,

are used for indexed addressing and sometimes used in addition and subtraction. There
are two sets of index pointers:

 Source Index (SI) - It is used as source index for string operations.

 Destination Index (DI) - It is used as destination index for string operations.

Control Registers

The 32-bit instruction pointer register and the 32-bit flags register combined are
considered as the control registers.

Many instructions involve comparisons and mathematical calculations and change the

status of the flags and some other conditional instructions test the value of these status

flags to take the control flow to other location.

The common flag bits are:

 Overflow Flag (OF): It indicates the overflow of a high-order bit (leftmost bit)

of data after a signed arithmetic operation.

 Direction Flag (DF): It determines left or right direction for moving or

comparing string data. When the DF value is 0, the string operation takes left-to-

right direction and when the value is set to 1, the string operation takes right-to-

left direction.

 Interrupt Flag (IF): It determines whether the external interrupts like keyboard

entry, etc., are to be ignored or processed. It disables the external interrupt
when the value is 0 and enables interrupts when set to 1.

 Trap Flag (TF): It allows setting the operation of the processor in single-step

mode. The DEBUG program we used sets the trap flag, so we could step through

the execution one instruction at a time.

 Sign Flag (SF): It shows the sign of the result of an arithmetic operation. This

flag is set according to the sign of a data item following the arithmetic operation.

The sign is indicated by the high-order of leftmost bit. A positive result clears the
value of SF to 0 and negative result sets it to 1.

 Zero Flag (ZF): It indicates the result of an arithmetic or comparison operation.

A nonzero result clears the zero flag to 0, and a zero result sets it to 1.

 Auxiliary Carry Flag (AF): It contains the carry from bit 3 to bit 4 following an

arithmetic operation; used for specialized arithmetic. The AF is set when a 1-byte
arithmetic operation causes a carry from bit 3 into bit 4.

Assembly Programming

17

 Parity Flag (PF): It indicates the total number of 1-bits in the result obtained

from an arithmetic operation. An even number of 1-bits clears the parity flag to 0
and an odd number of 1-bits sets the parity flag to 1.

 Carry Flag (CF): It contains the carry of 0 or 1 from a high-order bit (leftmost)

after an arithmetic operation. It also stores the contents of last bit of
a shift or rotate operation.

The following table indicates the position of flag bits in the 16-bit Flags register:

Flag: O D I T S Z A P C

Bit no: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Registers

Segments are specific areas defined in a program for containing data, code and stack.

There are three main segments:

 Code Segment: It contains all the instructions to be executed. A 16-bit Code

Segment register or CS register stores the starting address of the code segment.

 Data Segment: It contains data, constants and work areas. A 16-bit Data
Segment register or DS register stores the starting address of the data segment.

 Stack Segment: It contains data and return addresses of procedures or

subroutines. It is implemented as a 'stack' data structure. The Stack Segment
register or SS register stores the starting address of the stack.

Apart from the DS, CS and SS registers, there are other extra segment registers - ES

(extra segment), FS and GS, which provide additional segments for storing data.

In assembly programming, a program needs to access the memory locations. All

memory locations within a segment are relative to the starting address of the segment.

A segment begins in an address evenly divisible by 16 or hexadecimal 10. So, the

rightmost hex digit in all such memory addresses is 0, which is not generally stored in

the segment registers.

The segment registers stores the starting addresses of a segment. To get the exact

location of data or instruction within a segment, an offset value (or displacement) is

required. To reference any memory location in a segment, the processor combines the

segment address in the segment register with the offset value of the location.

Example:

Look at the following simple program to understand the use of registers in assembly

programming. This program displays 9 stars on the screen along with a simple message:

section .text

 global _start ;must be declared for linker (gcc)

_start: ;tell linker entry point

 mov edx,len ;message length

 mov ecx,msg ;message to write

Assembly Programming

18

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov edx,9 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'Displaying 9 stars',0xa ;a message

len equ $ - msg ;length of message

s2 times 9 db '*'

When the above code is compiled and executed, it produces the following result:

Displaying 9 stars

Assembly Programming

19

System calls are APIs for the interface between the user space and the kernel space. We

have already used the system calls, sys_write and sys_exit, for writing into the screen

and exiting from the program, respectively.

Linux System Calls

You can make use of Linux system calls in your assembly programs. You need to take
the following steps for using Linux system calls in your program:

 Put the system call number in the EAX register.

 Store the arguments to the system call in the registers EBX, ECX, etc.

 Call the relevant interrupt (80h).

 The result is usually returned in the EAX register.

There are six registers that store the arguments of the system call used. These are the

EBX, ECX, EDX, ESI, EDI, and EBP. These registers take the consecutive arguments,

starting with the EBX register. If there are more than six arguments, then the memory
location of the first argument is stored in the EBX register.

The following code snippet shows the use of the system call sys_exit:

mov eax,1 ; system call number (sys_exit)

int 0x80 ; call kernel

The following code snippet shows the use of the system call sys_write:

mov edx,4 ; message length

mov ecx,msg ; message to write

mov ebx,1 ; file descriptor (stdout)

mov eax,4 ; system call number (sys_write)

int 0x80 ; call kernel

All the syscalls are listed in /usr/include/asm/unistd.h, together with their numbers (the

value to put in EAX before you call int 80h).

The following table shows some of the system calls used in this tutorial:

%eax Name %ebx %ecx %edx %esx %edi

1 sys_exit int - - - -

2 sys_fork struct pt_regs - - - -

6. Assembly ─ System Calls

Assembly Programming

20

3 sys_read unsigned int char * size_t - -

4 sys_write unsigned int const char * size_t - -

5 sys_open const char * int int - -

6 sys_close unsigned int - - - -

Example

The following example reads a number from the keyboard and displays it on the screen:

section .data ;Data segment

 userMsg db 'Please enter a number: ' ;Ask the user to enter a number

 lenUserMsg equ $-userMsg ;The length of the message

 dispMsg db 'You have entered: '

 lenDispMsg equ $-dispMsg

section .bss ;Uninitialized data

 num resb 5

section .text ;Code Segment

 global _start

_start:

 ;User prompt

 mov eax, 4

 mov ebx, 1

 mov ecx, userMsg

 mov edx, lenUserMsg

 int 80h

 ;Read and store the user input

 mov eax, 3

 mov ebx, 2

 mov ecx, num

 mov edx, 5 ;5 bytes (numeric, 1 for sign) of that information

 int 80h

 ;Output the message 'The entered number is: '

 mov eax, 4

Assembly Programming

21

 mov ebx, 1

 mov ecx, dispMsg

 mov edx, lenDispMsg

 int 80h

 ;Output the number entered

 mov eax, 4

 mov ebx, 1

 mov ecx, num

 mov edx, 5

 int 80h

; Exit code

 mov eax, 1

 mov ebx, 0

 int 80h

When the above code is compiled and executed, it produces the following result:

Please enter a number:

1234

You have entered:1234

Assembly Programming

22

Most assembly language instructions require operands to be processed. An operand

address provides the location, where the data to be processed is stored. Some

instructions do not require an operand, whereas some other instructions may require
one, two, or three operands.

When an instruction requires two operands, the first operand is generally the

destination, which contains data in a register or memory location and the second

operand is the source. Source contains either the data to be delivered (immediate

addressing) or the address (in register or memory) of the data. Generally, the source
data remains unaltered after the operation.

The three basic modes of addressing are:

 Register addressing

 Immediate addressing

 Memory addressing

Register Addressing

In this addressing mode, a register contains the operand. Depending upon the
instruction, the register may be the first operand, the second operand or both.

For example,

MOV DX, TAX_RATE ; Register in first operand

MOV COUNT, CX ; Register in second operand

MOV EAX, EBX ; Both the operands are in registers

As processing data between registers does not involve memory, it provides fastest
processing of data.

Immediate Addressing

An immediate operand has a constant value or an expression. When an instruction with

two operands uses immediate addressing, the first operand may be a register or

memory location, and the second operand is an immediate constant. The first operand
defines the length of the data.

For example,

BYTE_VALUE DB 150 ; A byte value is defined

WORD_VALUE DW 300 ; A word value is defined

ADD BYTE_VALUE, 65 ; An immediate operand 65 is added

MOV AX, 45H ; Immediate constant 45H is transferred to AX

7. Assembly ─ Addressing Modes

Assembly Programming

23

Direct Memory Addressing

When operands are specified in memory addressing mode, direct access to main

memory, usually to the data segment, is required. This way of addressing results in

slower processing of data. To locate the exact location of data in memory, we need the

segment start address, which is typically found in the DS register and an offset value.
This offset value is also called effective address.

In direct addressing mode, the offset value is specified directly as part of the instruction,

usually indicated by the variable name. The assembler calculates the offset value and

maintains a symbol table, which stores the offset values of all the variables used in the
program.

In direct memory addressing, one of the operands refers to a memory location and the
other operand references a register.

For example,

ADD BYTE_VALUE, DL ; Adds the register in the memory location

MOV BX, WORD_VALUE ; Operand from the memory is added to register

Direct-Offset Addressing

This addressing mode uses the arithmetic operators to modify an address. For example,
look at the following definitions that define tables of data:

BYTE_TABLE DB 14, 15, 22, 45 ; Tables of bytes

WORD_TABLE DW 134, 345, 564, 123 ; Tables of words

The following operations access data from the tables in the memory into registers:

MOV CL, BYTE_TABLE[2] ; Gets the 3rd element of the BYTE_TABLE

MOV CL, BYTE_TABLE + 2 ; Gets the 3rd element of the BYTE_TABLE

MOV CX, WORD_TABLE[3] ; Gets the 4th element of the WORD_TABLE

MOV CX, WORD_TABLE + 3 ; Gets the 4th element of the WORD_TABLE

Indirect Memory Addressing

This addressing mode utilizes the computer's ability of Segment:Offset addressing.

Generally, the base registers EBX, EBP (or BX, BP) and the index registers (DI, SI),
coded within square brackets for memory references, are used for this purpose.

Indirect addressing is generally used for variables containing several elements like,

arrays. Starting address of the array is stored in, say, the EBX register.

The following code snippet shows how to access different elements of the variable.

MY_TABLE TIMES 10 DW 0 ; Allocates 10 words (2 bytes) each initialized to 0

MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX

MOV [EBX], 110 ; MY_TABLE[0] = 110

Assembly Programming

24

ADD EBX, 2 ; EBX = EBX +2

MOV [EBX], 123 ; MY_TABLE[1] = 123

The MOV Instruction

We have already used the MOV instruction that is used for moving data from one storage
space to another. The MOV instruction takes two operands.

Syntax

The syntax of the MOV instruction is:

MOV destination, source

The MOV instruction may have one of the following five forms:

MOV register, register

MOV register, immediate

MOV memory, immediate

MOV register, memory

MOV memory, register

Please note that:

 Both the operands in MOV operation should be of same size

 The value of source operand remains unchanged

The MOV instruction causes ambiguity at times. For example, look at the statements:

MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX

MOV [EBX], 110 ; MY_TABLE[0] = 110

It is not clear whether you want to move a byte equivalent or word equivalent of the
number 110. In such cases, it is wise to use a type specifier.

Following table shows some of the common type specifiers:

Type Specifier Bytes addressed

BYTE 1

WORD 2

DWORD 4

QWORD 8

Assembly Programming

25

TBYTE 10

Example

The following program illustrates some of the concepts discussed above. It stores a

name 'Zara Ali' in the data section of the memory, then changes its value to another
name 'Nuha Ali' programmatically and displays both the names.

section .text

 global _start ;must be declared for linker (ld)

_start: ;tell linker entry point

;writing the name 'Zara Ali'

 mov edx,9 ;message length

 mov ecx, name ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov [name], dword 'Nuha' ; Changed the name to Nuha Ali

;writing the name 'Nuha Ali'

 mov edx,8 ;message length

 mov ecx,name ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

name db 'Zara Ali '

When the above code is compiled and executed, it produces the following result:

Zara Ali Nuha Ali

Assembly Programming

26

NASM provides various define directives for reserving storage space for variables. The

define assembler directive is used for allocation of storage space. It can be used to

reserve as well as initialize one or more bytes.

Allocating Storage Space for Initialized Data

The syntax for storage allocation statement for initialized data is:

[variable-name] define-directive initial-value [,initial-value]...

Where, variable-name is the identifier for each storage space. The assembler associates

an offset value for each variable name defined in the data segment.

There are five basic forms of the define directive:

Directive Purpose Storage Space

DB Define Byte allocates 1 byte

DW Define Word allocates 2 bytes

DD Define Doubleword allocates 4 bytes

DQ Define Quadword allocates 8 bytes

DT Define Ten Bytes allocates 10 bytes

Following are some examples of using define directives:

choice DB 'y'

number DW 12345

neg_number DW -12345

big_number DQ 123456789

real_number1 DD 1.234

real_number2 DQ 123.456

Please note that:

 Each byte of character is stored as its ASCII value in hexadecimal.

 Each decimal value is automatically converted to its 16-bit binary equivalent and
stored as a hexadecimal number.

8. Assembly ─ Variables

Assembly Programming

27

 Processor uses the little-endian byte ordering.

 Negative numbers are converted to its 2's complement representation.

 Short and long floating-point numbers are represented using 32 or 64 bits,

respectively.

The following program shows the use of define directive:

section .text

 global _start ;must be declared for linker (gcc)

_start: ;tell linker entry point

 mov edx,1 ;message length

 mov ecx,choice ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

choice DB 'y'

When the above code is compiled and executed, it produces the following result:

y

Allocating Storage Space for Uninitialized Data

The reserve directives are used for reserving space for uninitialized data. The reserve

directives take a single operand that specifies the number of units of space to be

reserved. Each define directive has a related reserve directive.

There are five basic forms of the reserve directive:

Directive Purpose

RESB Reserve a Byte

RESW Reserve a Word

RESD Reserve a Doubleword

Assembly Programming

28

RESQ Reserve a Quadword

REST Reserve a Ten Bytes

Multiple Definitions

You can have multiple data definition statements in a program. For example:

choice DB 'Y' ;ASCII of y = 79H

number1 DW 12345 ;12345D = 3039H

number2 DD 12345679 ;123456789D = 75BCD15H

The assembler allocates contiguous memory for multiple variable definitions.

Multiple Initializations

The TIMES directive allows multiple initializations to the same value. For example, an

array named marks of size 9 can be defined and initialized to zero using the following

statement:

marks TIMES 9 DW 0

The TIMES directive is useful in defining arrays and tables. The following program

displays 9 asterisks on the screen:

section .text

 global _start ;must be declared for linker (ld)

_start: ;tell linker entry point

 mov edx,9 ;message length

 mov ecx, stars ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

stars times 9 db '*'

When the above code is compiled and executed, it produces the following result:

Assembly Programming

29

There are several directives provided by NASM that define constants. We have already
used the EQU directive in previous chapters. We will particularly discuss three directives:

 EQU

 %assign

 %define

The EQU Directive

The EQU directive is used for defining constants. The syntax of the EQU directive is as

follows:

CONSTANT_NAME EQU expression

For example,

TOTAL_STUDENTS equ 50

You can then use this constant value in your code, like:

mov ecx, TOTAL_STUDENTS

cmp eax, TOTAL_STUDENTS

The operand of an EQU statement can be an expression:

LENGTH equ 20

WIDTH equ 10

AREA equ length * width

Above code segment would define AREA as 200.

Example

The following example illustrates the use of the EQU directive:

SYS_EXIT equ 1

SYS_WRITE equ 4

STDIN equ 0

STDOUT equ 1

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov eax, SYS_WRITE

9. Assembly ─ Constants

Assembly Programming

30

 mov ebx, STDOUT

 mov ecx, msg1

 mov edx, len1

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg2

 mov edx, len2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg3

 mov edx, len3

 int 0x80

 mov eax,SYS_EXIT ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg1 db 'Hello, programmers!',0xA,0xD

len1 equ $ - msg1

msg2 db 'Welcome to the world of,', 0xA,0xD

len2 equ $ - msg2

msg3 db 'Linux assembly programming! '

len3 equ $- msg3

When the above code is compiled and executed, it produces the following result:

Hello, programmers!

Welcome to the world of,

Linux assembly programming!

The %assign Directive

The %assign directive can be used to define numeric constants like the EQU directive.

This directive allows redefinition. For example, you may define the constant TOTAL as:

%assign TOTAL 10

Assembly Programming

31

Later in the code, you can redefine it as:

%assign TOTAL 20

This directive is case-sensitive.

The %define Directive

The %define directive allows defining both numeric and string constants. This directive

is similar to the #define in C. For example, you may define the constant PTR as:

%define PTR [EBP+4]

The above code replaces PTR by [EBP+4].

This directive also allows redefinition and it is case-sensitive.

Assembly Programming

32

The INC Instruction

The INC instruction is used for incrementing an operand by one. It works on a single
operand that can be either in a register or in memory.

Syntax

The INC instruction has the following syntax:

INC destination

The operand destination could be an 8-bit, 16-bit or 32-bit operand.

Example

INC EBX ; Increments 32-bit register

INC DL ; Increments 8-bit register

INC [count] ; Increments the count variable

The DEC Instruction

The DEC instruction is used for decrementing an operand by one. It works on a single
operand that can be either in a register or in memory.

Syntax

The DEC instruction has the following syntax:

DEC destination

The operand destination could be an 8-bit, 16-bit or 32-bit operand.

Example

segment .data

 count dw 0

 value db 15

segment .text

 inc [count]

 dec [value]

 mov ebx, count

 inc word [ebx]

 mov esi, value

10. Assembly ─ Arithmetic Instructions

Assembly Programming

33

 dec byte [esi]

The ADD and SUB Instructions

The ADD and SUB instructions are used for performing simple addition/subtraction of

binary data in byte, word and doubleword size, i.e., for adding or subtracting 8-bit, 16-
bit or 32-bit operands, respectively.

Syntax

The ADD and SUB instructions have the following syntax:

ADD/SUB destination, source

The ADD/SUB instruction can take place between:

 Register to register

 Memory to register

 Register to memory

 Register to constant data

 Memory to constant data

However, like other instructions, memory-to-memory operations are not possible using

ADD/SUB instructions. An ADD or SUB operation sets or clears the overflow and carry
flags.

Example

The following example will ask two digits from the user, store the digits in the EAX and

EBX register, respectively, add the values, store the result in a memory location 'res' and
finally display the result.

SYS_EXIT equ 1

SYS_READ equ 3

SYS_WRITE equ 4

STDIN equ 0

STDOUT equ 1

segment .data

 msg1 db "Enter a digit ", 0xA,0xD

 len1 equ $- msg1

 msg2 db "Please enter a second digit", 0xA,0xD

 len2 equ $- msg2

Assembly Programming

34

 msg3 db "The sum is: "

 len3 equ $- msg3

segment .bss

 num1 resb 2

 num2 resb 2

 res resb 1

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg1

 mov edx, len1

 int 0x80

 mov eax, SYS_READ

 mov ebx, STDIN

 mov ecx, num1

 mov edx, 2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg2

 mov edx, len2

 int 0x80

 mov eax, SYS_READ

 mov ebx, STDIN

 mov ecx, num2

 mov edx, 2

 int 0x80

 mov eax, SYS_WRITE

Assembly Programming

35

 mov ebx, STDOUT

 mov ecx, msg3

 mov edx, len3

 int 0x80

 ; moving the first number to eax register and second number to ebx

 ; and subtracting ascii '0' to convert it into a decimal number

 mov eax, [number1]

 sub eax, '0'

 mov ebx, [number2]

 sub ebx, '0'

 ; add eax and ebx

 add eax, ebx

 ; add '0' to to convert the sum from decimal to ASCII

 add eax, '0'

 ; storing the sum in memory location res

 mov [res], eax

 ; print the sum

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, res

 mov edx, 1

 int 0x80

exit:

 mov eax, SYS_EXIT

 xor ebx, ebx

 int 0x80

When the above code is compiled and executed, it produces the following result:

Enter a digit:

3

Please enter a second digit:

4

The sum is:

Assembly Programming

36

7

The program with hardcoded variables:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov eax,'3'

 sub eax, '0'

 mov ebx, '4'

 sub ebx, '0'

 add eax, ebx

 add eax, '0'

 mov [sum], eax

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov ecx,sum

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

 msg db "The sum is:", 0xA,0xD

 len equ $ - msg

 segment .bss

 sum resb 1

When the above code is compiled and executed, it produces the following result:

The sum is:

7

Assembly Programming

37

The MUL/IMUL Instruction

There are two instructions for multiplying binary data. The MUL (Multiply) instruction

handles unsigned data and the IMUL (Integer Multiply) handles signed data. Both
instructions affect the Carry and Overflow flag.

Syntax

The syntax for the MUL/IMUL instructions is as follows:

MUL/IMUL multiplier

Multiplicand in both cases will be in an accumulator, depending upon the size of the

multiplicand and the multiplier and the generated product is also stored in two registers

depending upon the size of the operands. Following section explains MUL instructions

with three different cases:

SN Scenarios

1 When two bytes are multiplied -

The multiplicand is in the AL register, and the multiplier is a byte in the memory

or in another register. The product is in AX. High-order 8 bits of the product is
stored in AH and the low-order 8 bits are stored in AL.

2 When two one-word values are multiplied -

The multiplicand should be in the AX register, and the multiplier is a word in

memory or another register. For example, for an instruction like MUL DX, you
must store the multiplier in DX and the multiplicand in AX.

The resultant product is a doubleword, which will need two registers. The high-

order (leftmost) portion gets stored in DX and the lower-order (rightmost)
portion gets stored in AX.

3 When two doubleword values are multiplied -

When two doubleword values are multiplied, the multiplicand should be in EAX

and the multiplier is a doubleword value stored in memory or in another register.

The product generated is stored in the EDX:EAX registers, i.e., the high order 32

bits gets stored in the EDX register and the low order 32-bits are stored in the
EAX register.

Assembly Programming

38

Example

MOV AL, 10

MOV DL, 25

MUL DL

...

MOV DL, 0FFH ; DL= -1

MOV AL, 0BEH ; AL = -66

IMUL DL

Example

The following example multiplies 3 with 2, and displays the result:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov al,'3'

 sub al, '0'

 mov bl, '2'

 sub bl, '0'

 mul bl

 add al, '0'

 mov [res], al

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov ecx,res

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

Assembly Programming

39

 int 0x80 ;call kernel

section .data

msg db "The result is:", 0xA,0xD

len equ $- msg

segment .bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The result is:

6

The DIV/IDIV Instructions

The division operation generates two elements - a quotient and a remainder. In case

of multiplication, overflow does not occur because double-length registers are used to

keep the product. However, in case of division, overflow may occur. The processor
generates an interrupt if overflow occurs.

The DIV (Divide) instruction is used for unsigned data and the IDIV (Integer Divide) is
used for signed data.

Syntax

The format for the DIV/IDIV instruction:

DIV/IDIV divisor

The dividend is in an accumulator. Both the instructions can work with 8-bit, 16-bit or

32-bit operands. The operation affects all six status flags. Following section explains

three cases of division with different operand size:

SN Scenarios

1 When the divisor is 1 byte -

The dividend is assumed to be in the AX register (16 bits). After division, the
quotient goes to the AL register and the remainder goes to the AH register.

Assembly Programming

40

2 When the divisor is 1 word -

The dividend is assumed to be 32 bits long and in the DX:AX registers. The high-

order 16 bits are in DX and the low-order 16 bits are in AX. After division, the

16-bit quotient goes to the AX register and the 16-bit remainder goes to the DX
register.

3 When the divisor is doubleword -

The dividend is assumed to be 64 bits long and in the EDX:EAX registers. The

high-order 32 bits are in EDX and the low-order 32 bits are in EAX. After division,

the 32-bit quotient goes to the EAX register and the 32-bit remainder goes to the
EDX register.

Example

The following example divides 8 with 2. The dividend 8 is stored in the 16-bit AX

register and the divisor 2 is stored in the 8-bit BL register.

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ax,'8'

 sub ax, '0'

 mov bl, '2'

 sub bl, '0'

 div bl

 add ax, '0'

 mov [res], ax

Assembly Programming

41

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov ecx,res

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db "The result is:", 0xA,0xD

len equ $- msg

segment .bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The result is:

4

Assembly Programming

42

The processor instruction set provides the instructions AND, OR, XOR, TEST, and NOT

Boolean logic, which tests, sets, and clears the bits according to the need of the

program.

The format for these instructions:

SN Instruction Format

1 AND AND operand1, operand2

2 OR OR operand1, operand2

3 XOR XOR operand1, operand2

4 TEST TEST operand1, operand2

5 NOT NOT operand1

The first operand in all the cases could be either in register or in memory. The second

operand could be either in register/memory or an immediate (constant) value. However,

memory-to-memory operations are not possible. These instructions compare or match

bits of the operands and set the CF, OF, PF, SF and ZF flags.

The AND Instruction

The AND instruction is used for supporting logical expressions by performing bitwise AND

operation. The bitwise AND operation returns 1, if the matching bits from both the
operands are 1, otherwise it returns 0. For example:

 Operand1: 0101

 Operand2: 0011

After AND -> Operand1: 0001

The AND operation can be used for clearing one or more bits. For example, say the BL

register contains 0011 1010. If you need to clear the high-order bits to zero, you AND it
with 0FH.

AND BL, 0FH ; This sets BL to 0000 1010

Let's take up another example. If you want to check whether a given number is odd or

even, a simple test would be to check the least significant bit of the number. If this is 1,
the number is odd, else the number is even.

11. Assembly ─ Logical Instructions

Assembly Programming

43

Assuming the number is in AL register, we can write:

AND AL, 01H ; ANDing with 0000 0001

JZ EVEN_NUMBER

The following program illustrates this:

Example

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ax, 8h ;getting 8 in the ax

 and ax, 1 ;and ax with 1

 jz evnn

 mov eax, 4 ;system call number (sys_write)

 mov ebx, 1 ;file descriptor (stdout)

 mov ecx, odd_msg ;message to write

 mov edx, len2 ;length of message

 int 0x80 ;call kernel

 jmp outprog

evnn:

 mov ah, 09h

 mov eax, 4 ;system call number (sys_write)

 mov ebx, 1 ;file descriptor (stdout)

 mov ecx, even_msg ;message to write

 mov edx, len1 ;length of message

 int 0x80 ;call kernel

outprog:

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

even_msg db 'Even Number!' ;message showing even number

len1 equ $ - even_msg

odd_msg db 'Odd Number!' ;message showing odd number

len2 equ $ - odd_msg

When the above code is compiled and executed, it produces the following result:

Even Number!

Assembly Programming

44

Change the value in the ax register with an odd digit, like:

mov ax, 9h ; getting 9 in the ax

The program would display:

Odd Number!

Similarly, to clear the entire register, you can AND it with 00H.

The OR Instruction

The OR instruction is used for supporting logical expression by performing bitwise OR

operation. The bitwise OR operator returns 1, if the matching bits from either or both
operands are one. It returns 0, if both the bits are zero.

For example,

 Operand1: 0101

 Operand2: 0011

After OR -> Operand1: 0111

The OR operation can be used for setting one or more bits. For example, let us assume

the AL register contains 0011 1010, you need to set the four low-order bits, you can OR
it with a value 0000 1111, i.e., FH.

OR BL, 0FH ; This sets BL to 0011 1111

Example

The following example demonstrates the OR instruction. Let us store the value 5 and 3 in
the AL and the BL registers, respectively, then the instruction,

OR AL, BL

should store 7 in the AL register:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov al, 5 ;getting 5 in the al

 mov bl, 3 ;getting 3 in the bl

 or al, bl ;or al and bl registers, result should be 7

 add al, byte '0' ;converting decimal to ascii

 mov [result], al

 mov eax, 4

 mov ebx, 1

Assembly Programming

45

 mov ecx, result

 mov edx, 1

 int 0x80

outprog:

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .bss

result resb 1

When the above code is compiled and executed, it produces the following result:

7

The XOR Instruction

The XOR instruction implements the bitwise XOR operation. The XOR operation sets the

resultant bit to 1, if and only if the bits from the operands are different. If the bits from
the operands are same (both 0 or both 1), the resultant bit is cleared to 0.

For example,

 Operand1: 0101

 Operand2: 0011

After XOR -> Operand1: 0110

XORing an operand with itself changes the operand to 0. This is used to clear a register.

XOR EAX, EAX

The TEST Instruction

The TEST instruction works same as the AND operation, but unlike AND instruction, it

does not change the first operand. So, if we need to check whether a number in a

register is even or odd, we can also do this using the TEST instruction without changing
the original number.

TEST AL, 01H

JZ EVEN_NUMBER

Assembly Programming

46

The NOT Instruction

The NOT instruction implements the bitwise NOT operation. NOT operation reverses the

bits in an operand. The operand could be either in a register or in the memory.

For example,

 Operand1: 0101 0011

After NOT -> Operand1: 1010 1100

Assembly Programming

47

Conditional execution in assembly language is accomplished by several looping and

branching instructions. These instructions can change the flow of control in a program.

Conditional execution is observed in two scenarios:

SN Conditional Instructions

1

Unconditional jump

This is performed by the JMP instruction. Conditional execution often involves a

transfer of control to the address of an instruction that does not follow the

currently executing instruction. Transfer of control may be forward, to execute a

new set of instructions or backward, to re-execute the same steps.

2

Conditional jump

This is performed by a set of jump instructions j<condition> depending upon the

condition. The conditional instructions transfer the control by breaking the
sequential flow and they do it by changing the offset value in IP.

Let us discuss the CMP instruction before discussing the conditional instructions.

CMP Instruction

The CMP instruction compares two operands. It is generally used in conditional

execution. This instruction basically subtracts one operand from the other for comparing

whether the operands are equal or not. It does not disturb the destination or source
operands. It is used along with the conditional jump instruction for decision making.

Syntax

CMP destination, source

CMP compares two numeric data fields. The destination operand could be either in

register or in memory. The source operand could be a constant (immediate) data,
register or memory.

Example

CMP DX, 00 ; Compare the DX value with zero

JE L7 ; If yes, then jump to label L7

.

.

L7: ...

12. Assembly ─ Conditions

Assembly Programming

48

CMP is often used for comparing whether a counter value has reached the number of
times a loop needs to be run. Consider the following typical condition:

INC EDX

CMP EDX, 10 ; Compares whether the counter has reached 10

JLE LP1 ; If it is less than or equal to 10, then jump

 ; to LP1 Unconditional Jump

As mentioned earlier, this is performed by the JMP instruction. Conditional execution

often involves a transfer of control to the address of an instruction that does not follow

the currently executing instruction. Transfer of control may be forward, to execute a new
set of instructions or backward, to re-execute the same steps.

Syntax

The JMP instruction provides a label name where the flow of control is transferred
immediately. The syntax of the JMP instruction is:

JMP label

Example

The following code snippet illustrates the JMP instruction:

MOV AX, 00 ; Initializing AX to 0

MOV BX, 00 ; Initializing BX to 0

MOV CX, 01 ; Initializing CX to 1

L20:

ADD AX, 01 ; Increment AX

ADD BX, AX ; Add AX to BX

SHL CX, 1 ; shift left CX, this in turn doubles the CX value

JMP L20 ; repeats the statements

Conditional Jump

If some specified condition is satisfied in conditional jump, the control flow is transferred

to a target instruction. There are numerous conditional jump instructions depending

upon the condition and data.

Following are the conditional jump instructions used on signed data used for arithmetic

operations:

Instruction Description Flags tested

JE/JZ Jump Equal or Jump Zero ZF

JNE/JNZ Jump not Equal or Jump Not Zero ZF

Assembly Programming

49

JG/JNLE Jump Greater or Jump Not Less/Equal OF, SF, ZF

JGE/JNL Jump Greater or Jump Not Less OF, SF

JL/JNGE Jump Less or Jump Not Greater/Equal OF, SF

JLE/JNG Jump Less/Equal or Jump Not Greater OF, SF, ZF

Following are the conditional jump instructions used on unsigned data used for logical

operations:

Instruction Description Flags tested

JE/JZ Jump Equal or Jump Zero ZF

JNE/JNZ Jump not Equal or Jump Not Zero ZF

JA/JNBE Jump Above or Jump Not Below/Equal CF, ZF

JAE/JNB Jump Above/Equal or Jump Not Below CF

JB/JNAE Jump Below or Jump Not Above/Equal CF

JBE/JNA Jump Below/Equal or Jump Not Above AF, CF

The following conditional jump instructions have special uses and check the value of

flags:

Instruction Description Flags tested

JXCZ Jump if CX is Zero none

JC Jump If Carry CF

JNC Jump If No Carry CF

JO Jump If Overflow OF

JNO Jump If No Overflow OF

Assembly Programming

50

JP/JPE Jump Parity or Jump Parity Even PF

JNP/JPO Jump No Parity or Jump Parity Odd PF

JS Jump Sign (negative value) SF

JNS Jump No Sign (positive value) SF

The syntax for the J<condition> set of instructions:

Example

CMP AL, BL

JE EQUAL

CMP AL, BH

JE EQUAL

CMP AL, CL

JE EQUAL

NON_EQUAL: ...

EQUAL: ...

Example

The following program displays the largest of three variables. The variables are double-

digit variables. The three variables num1, num2 and num3 have values 47, 72 and 31,
respectively:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ecx, [num1]

 cmp ecx, [num2]

 jg check_third_num

 mov ecx, [num3]

 check_third_num:

 cmp ecx, [num3]

 jg _exit

 mov ecx, [num3]

 _exit:

Assembly Programming

51

 mov [largest], ecx

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov ecx,largest

 mov edx, 2

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax, 1

 int 80h

section .data

 msg db "The largest digit is: ", 0xA,0xD

 len equ $- msg

 num1 dd '47'

 num2 dd '22'

 num3 dd '31'

segment .bss

 largest resb 2

When the above code is compiled and executed, it produces the following result:

The largest digit is:

47

Assembly Programming

52

The JMP instruction can be used for implementing loops. For example, the following code
snippet can be used for executing the loop-body 10 times.

MOV CL, 10

L1:

<LOOP-BODY>

DEC CL

JNZ L1

The processor instruction set, however, includes a group of loop instructions for

implementing iteration. The basic LOOP instruction has the following syntax:

LOOP label

Where, label is the target label that identifies the target instruction as in the jump

instructions. The LOOP instruction assumes that the ECX register contains the loop

count. When the loop instruction is executed, the ECX register is decremented and the

control jumps to the target label, until the ECX register value, i.e., the counter reaches

the value zero.

The above code snippet could be written as:

mov ECX,10

l1:

<loop body>

loop l1

Example

The following program prints the number 1 to 9 on the screen:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ecx,10

 mov eax, '1'

l1:

 mov [num], eax

 mov eax, 4

 mov ebx, 1

13. Assembly ─ Loops

Assembly Programming

53

 push ecx

 mov ecx, num

 mov edx, 1

 int 0x80

 mov eax, [num]

 sub eax, '0'

 inc eax

 add eax, '0'

 pop ecx

 loop l1

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .bss

num resb 1

When the above code is compiled and executed, it produces the following result:

123456789:

Assembly Programming

54

Numerical data is generally represented in binary system. Arithmetic instructions operate

on binary data. When numbers are displayed on screen or entered from keyboard, they

are in ASCII form.

So far, we have converted this input data in ASCII form to binary for arithmetic

calculations and converted the result back to binary. The following code shows this:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov eax,'3'

 sub eax, '0'

 mov ebx, '4'

 sub ebx, '0'

 add eax, ebx

 add eax, '0'

 mov [sum], eax

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov ecx,sum

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db "The sum is:", 0xA,0xD

len equ $ - msg

segment .bss

sum resb 1

14. Assembly ─ Numbers

Assembly Programming

55

When the above code is compiled and executed, it produces the following result:

The sum is:

7

Such conversions, however, have an overhead, and assembly language programming

allows processing numbers in a more efficient way, in the binary form. Decimal numbers
can be represented in two forms:

 ASCII form

 BCD or Binary Coded Decimal form

ASCII Representation

In ASCII representation, decimal numbers are stored as string of ASCII characters. For

example, the decimal value 1234 is stored as:

31 32 33 34H

Where, 31H is ASCII value for 1, 32H is ASCII value for 2, and so on. There are four
instructions for processing numbers in ASCII representation:

 AAA - ASCII Adjust After Addition

 AAS - ASCII Adjust After Subtraction

 AAM - ASCII Adjust After Multiplication

 AAD - ASCII Adjust Before Division

These instructions do not take any operands and assume the required operand to be in
the AL register.

The following example uses the AAS instruction to demonstrate the concept:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 sub ah, ah

 mov al, '9'

 sub al, '3'

 aas

 or al, 30h

 mov [res], ax

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

Assembly Programming

56

 int 0x80 ;call kernel

 mov edx,1 ;message length

 mov ecx,res ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'The Result is:',0xa

len equ $ - msg

section .bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The Result is:

6

BCD Representation

There are two types of BCD representation:

 Unpacked BCD representation

 Packed BCD representation

In unpacked BCD representation, each byte stores the binary equivalent of a decimal
digit. For example, the number 1234 is stored as:

01 02 03 04H

There are two instructions for processing these numbers:

 AAM - ASCII Adjust After Multiplication

 AAD - ASCII Adjust Before Division

The four ASCII adjust instructions, AAA, AAS, AAM, and AAD, can also be used with

unpacked BCD representation. In packed BCD representation, each digit is stored using

four bits. Two decimal digits are packed into a byte. For example, the number 1234 is
stored as:

12 34H

Assembly Programming

57

There are two instructions for processing these numbers:

 DAA - Decimal Adjust After Addition

 DAS - decimal Adjust After Subtraction

There is no support for multiplication and division in packed BCD representation.

Example

The following program adds up two 5-digit decimal numbers and displays the sum. It

uses the above concepts:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov esi, 4 ;pointing to the rightmost digit

 mov ecx, 5 ;num of digits

 clc

add_loop:

 mov al, [num1 + esi]

 adc al, [num2 + esi]

 aaa

 pushf

 or al, 30h

 popf

 mov [sum + esi], al

 dec esi

 loop add_loop

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov edx,5 ;message length

 mov ecx,sum ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

Assembly Programming

58

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'The Sum is:',0xa

len equ $ - msg

num1 db '12345'

num2 db '23456'

sum db ' '

When the above code is compiled and executed, it produces the following result:

The Sum is:

35801

Assembly Programming

59

We have already used variable length strings in our previous examples. The variable

length strings can have as many characters as required. Generally, we specify the length

of the string by either of the two ways:

 Explicitly storing string length

 Using a sentinel character

We can store the string length explicitly by using the $ location counter symbol that

represents the current value of the location counter. In the following example:

msg db 'Hello, world!',0xa ;our dear string

len equ $ - msg ;length of our dear string

$ points to the byte after the last character of the string variable msg. Therefore, $-msg

gives the length of the string. We can also write

msg db 'Hello, world!',0xa ;our dear string

len equ 13 ;length of our dear string

Alternatively, you can store strings with a trailing sentinel character to delimit a string

instead of storing the string length explicitly. The sentinel character should be a special
character that does not appear within a string.

For example:

message DB 'I am loving it!', 0

String Instructions

Each string instruction may require a source operand, a destination operand or both. For

32-bit segments, string instructions use ESI and EDI registers to point to the source and

destination operands, respectively.

For 16-bit segments, however, the SI and the DI registers are used to point to the
source and destination, respectively.

There are five basic instructions for processing strings. They are:

 MOVS - This instruction moves 1 Byte, Word or Doubleword of data from

memory location to another.

 LODS - This instruction loads from memory. If the operand is of one byte, it is

loaded into the AL register, if the operand is one word, it is loaded into the AX

register and a doubleword is loaded into the EAX register.

 STOS - This instruction stores data from register (AL, AX, or EAX) to memory.

 CMPS - This instruction compares two data items in memory. Data could be of a

byte size, word or doubleword.

15. Assembly ─Strings

Assembly Programming

60

 SCAS - This instruction compares the contents of a register (AL, AX or EAX) with

the contents of an item in memory.

Each of the above instruction has a byte, word, and doubleword version; and string
instructions can be repeated by using a repetition prefix.

These instructions use the ES:DI and DS:SI pair of registers, where DI and SI registers

contain valid offset addresses that refers to bytes stored in memory. SI is normally

associated with DS (data segment) and DI is always associated with ES (extra segment).

The DS:SI (or ESI) and ES:DI (or EDI) registers point to the source and destination

operands, respectively. The source operand is assumed to be at DS:SI (or ESI) and the
destination operand at ES:DI (or EDI) in memory.

For 16-bit addresses, the SI and DI registers are used, and for 32-bit addresses, the ESI
and EDI registers are used.

The following table provides various versions of string instructions and the assumed
space of the operands.

Basic
Instruction

Operands
at

Byte
Operation

Word
Operation

Double word
Operation

MOVS ES:DI,
DS:EI

MOVSB MOVSW MOVSD

LODS AX, DS:SI LODSB LODSW LODSD

STOS ES:DI, AX STOSB STOSW STOSD

CMPS DS:SI, ES:
DI

CMPSB CMPSW CMPSD

SCAS ES:DI, AX SCASB SCASW SCASD

Repetition Prefixes

The REP prefix, when set before a string instruction, for example - REP MOVSB, causes

repetition of the instruction based on a counter placed at the CX register. REP executes

the instruction, decreases CX by 1, and checks whether CX is zero. It repeats the

instruction processing until CX is zero.

The Direction Flag (DF) determines the direction of the operation.

 Use CLD (Clear Direction Flag, DF = 0) to make the operation left to right.

 Use STD (Set Direction Flag, DF = 1) to make the operation right to left.

The REP prefix also has the following variations:

 REP: it is the unconditional repeat. It repeats the operation until CX is zero.

Assembly Programming

61

 REPE or REPZ: It is conditional repeat. It repeats the operation while the zero flag

indicates equal/zero. It stops when the ZF indicates not equal/zero or when CX is
zero.

 REPNE or REPNZ: It is also conditional repeat. It repeats the operation while the

zero flag indicates not equal/zero. It stops when the ZF indicates equal/zero or

when CX is decremented to zero.

Assembly Programming

62

We have already discussed that the data definition directives to the assembler are used

for allocating storage for variables. The variable could also be initialized with some

specific value. The initialized value could be specified in hexadecimal, decimal or binary
form.

For example, we can define a word variable ‘months’ in either of the following way:

MONTHS DW 12

MONTHS DW 0CH

MONTHS DW 0110B

The data definition directives can also be used for defining a one-dimensional array. Let
us define a one-dimensional array of numbers.

NUMBERS DW 34, 45, 56, 67, 75, 89

The above definition declares an array of six words each initialized with the numbers 34,

45, 56, 67, 75, 89. This allocates 2x6 = 12 bytes of consecutive memory space. The

symbolic address of the first number will be NUMBERS and that of the second number

will be NUMBERS + 2 and so on.

Let us take up another example. You can define an array named inventory of size 8, and
initialize all the values with zero, as:

INVENTORY DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

Which can be abbreviated as:

INVENTORY DW 0, 0 , 0 , 0 , 0 , 0 , 0 , 0

The TIMES directive can also be used for multiple initializations to the same value. Using
TIMES, the INVENTORY array can be defined as:

INVENTORY TIMES 8 DW 0

16. Assembly ─Arrays

Assembly Programming

63

Example

The following example demonstrates the above concepts by defining a 3-element array

x, which stores three values: 2, 3 and 4. It adds the values in the array and displays the
sum 9:

section .text

 global _start ;must be declared for linker (ld)

_start:

 mov eax,3 ;number bytes to be summed

 mov ebx,0 ;EBX will store the sum

 mov ecx, x ;ECX will point to the current element to be summed

top: add ebx, [ecx]

 add ecx,1 ;move pointer to next element

 dec eax ;decrement counter

 jnz top ;if counter not 0, then loop again

done:

 add ebx, '0'

 mov [sum], ebx ;done, store result in "sum"

display:

 mov edx,1 ;message length

 mov ecx, sum ;message to write

 mov ebx, 1 ;file descriptor (stdout)

 mov eax, 4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax, 1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

global x

x:

 db 2

 db 4

 db 3

sum:

 db 0

Assembly Programming

64

When the above code is compiled and executed, it produces the following result:

9

Assembly Programming

65

Procedures or subroutines are very important in assembly language, as the assembly

language programs tend to be large in size. Procedures are identified by a name.

Following this name, the body of the procedure is described which performs a well-
defined job. End of the procedure is indicated by a return statement.

Syntax

Following is the syntax to define a procedure:

proc_name:

 procedure body

 ...

 ret

The procedure is called from another function by using the CALL instruction. The CALL

instruction should have the name of the called procedure as an argument as shown
below:

CALL proc_name

The called procedure returns the control to the calling procedure by using the RET
instruction.

Example

Let us write a very simple procedure named sum that adds the variables stored in the

ECX and EDX register and returns the sum in the EAX register:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov ecx,'4'

 sub ecx, '0'

 mov edx, '5'

 sub edx, '0'

 call sum ;call sum procedure

 mov [res], eax

 mov ecx, msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

17. Assembly ─ Procedures

Assembly Programming

66

 mov ecx, res

 mov edx, 1

 mov ebx, 1 ;file descriptor (stdout)

 mov eax, 4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

sum:

 mov eax, ecx

 add eax, edx

 add eax, '0'

 ret

section .data

msg db "The sum is:", 0xA,0xD

len equ $- msg

segment .bss

res resb 1

When the above code is compiled and executed, it produces the following result:

The sum is:

9

Stacks Data Structure

A stack is an array-like data structure in the memory in which data can be stored and

removed from a location called the 'top' of the stack. The data that needs to be stored is

'pushed' into the stack and data to be retrieved is 'popped' out from the stack. Stack is a

LIFO data structure, i.e., the data stored first is retrieved last.

Assembly language provides two instructions for stack operations: PUSH and POP. These
instructions have syntaxes like:

PUSH operand

POP address/register

The memory space reserved in the stack segment is used for implementing stack. The

registers SS and ESP (or SP) are used for implementing the stack. The top of the stack,

which points to the last data item inserted into the stack is pointed to by the SS:ESP

register, where the SS register points to the beginning of the stack segment and the SP
(or ESP) gives the offset into the stack segment.

Assembly Programming

67

The stack implementation has the following characteristics:

 Only words or doublewords could be saved into the stack, not a byte.

 The stack grows in the reverse direction, i.e., toward the lower memory address

 The top of the stack points to the last item inserted in the stack; it points to the

lower byte of the last word inserted.

As we discussed about storing the values of the registers in the stack before using them
for some use; it can be done in following way:

; Save the AX and BX registers in the stack

PUSH AX

PUSH BX

; Use the registers for other purpose

MOV AX, VALUE1

MOV BX, VALUE2

...

MOV VALUE1, AX

MOV VALUE2, BX

; Restore the original values

POP AX

POP BX

Example

The following program displays the entire ASCII character set. The main program calls a
procedure named display, which displays the ASCII character set.

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 call display

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

display:

 mov ecx, 256

next:

 push ecx

 mov eax, 4

 mov ebx, 1

 mov ecx, achar

 mov edx, 1

Assembly Programming

68

 int 80h

 pop ecx

 mov dx, [achar]

 cmp byte [achar], 0dh

 inc byte [achar]

 loop next

 ret

section .data

achar db '0'

When the above code is compiled and executed, it produces the following result:

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}

...

...

Assembly Programming

69

A recursive procedure is one that calls itself. There are two kind of recursion: direct and

indirect. In direct recursion, the procedure calls itself and in indirect recursion, the first

procedure calls a second procedure, which in turn calls the first procedure.

Recursion could be observed in numerous mathematical algorithms. For example,

consider the case of calculating the factorial of a number. Factorial of a number is given
by the equation:

Fact (n) = n * fact (n-1) for n > 0

For example: factorial of 5 is 1 x 2 x 3 x 4 x 5 = 5 x factorial of 4 and this can be a good

example of showing a recursive procedure. Every recursive algorithm must have an

ending condition, i.e., the recursive calling of the program should be stopped when a

condition is fulfilled. In the case of factorial algorithm, the end condition is reached when
n is 0.

The following program shows how factorial n is implemented in assembly language. To
keep the program simple, we will calculate factorial 3.

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov bx, 3 ;for calculating factorial 3

 call proc_fact

 add ax, 30h

 mov [fact], ax

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov edx,1 ;message length

 mov ecx,fact ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

18. Assembly ─ Recursion

Assembly Programming

70

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

proc_fact:

 cmp bl, 1

 jg do_calculation

 mov ax, 1

 ret

do_calculation:

 dec bl

 call proc_fact

 inc bl

 mul bl ;ax = al * bl

 ret

section .data

msg db 'Factorial 3 is:',0xa

len equ $ - msg

section .bss

fact resb 1

When the above code is compiled and executed, it produces the following result:

Factorial 3 is:

6

Assembly Programming

71

Writing a macro is another way of ensuring modular programming in assembly language.

 A macro is a sequence of instructions, assigned by a name and could be used
anywhere in the program.

 In NASM, macros are defined with %macro and %endmacro directives.

 The macro begins with the %macro directive and ends with the %endmacro
directive.

The Syntax for macro definition:

%macro macro_name number_of_params

<macro body>

%endmacro

Where, number_of_params specifies the number parameters, macro_name specifies the

name of the macro.

The macro is invoked by using the macro name along with the necessary parameters.

When you need to use some sequence of instructions many times in a program, you can

put those instructions in a macro and use it instead of writing the instructions all the
time.

For example, a very common need for programs is to write a string of characters in the

screen. For displaying a string of characters, you need the following sequence of
instructions:

mov edx,len ;message length

mov ecx,msg ;message to write

mov ebx,1 ;file descriptor (stdout)

mov eax,4 ;system call number (sys_write)

int 0x80 ;call kernel

In the above example of displaying a character string, the registers EAX, EBX, ECX and

EDX have been used by the INT 80H function call. So, each time you need to display on

screen, you need to save these registers on the stack, invoke INT 80H and then restore

the original value of the registers from the stack. So, it could be useful to write two
macros for saving and restoring data.

We have observed that, some instructions like IMUL, IDIV, INT, etc., need some of the

information to be stored in some particular registers and even return values in some

specific register(s). If the program was already using those registers for keeping

important data, then the existing data from these registers should be saved in the stack
and restored after the instruction is executed.

19. Assembly ─ Macros

Assembly Programming

72

Example

Following example shows defining and using macros:

; A macro with two parameters

; Implements the write system call

 %macro write_string 2

 mov eax, 4

 mov ebx, 1

 mov ecx, %1

 mov edx, %2

 int 80h

 %endmacro

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 write_string msg1, len1

 write_string msg2, len2

 write_string msg3, len3

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg1 db 'Hello, programmers!',0xA,0xD

len1 equ $ - msg1

msg2 db 'Welcome to the world of,', 0xA,0xD

len2 equ $- msg2

msg3 db 'Linux assembly programming! '

len3 equ $- msg3

When the above code is compiled and executed, it produces the following result:

Hello, programmers!

Welcome to the world of,

Linux assembly programming!

Assembly Programming

73

The system considers any input or output data as stream of bytes. There are three
standard file streams:

 Standard input (stdin),

 Standard output (stdout), and

 Standard error (stderr).

File Descriptor

A file descriptor is a 16-bit integer assigned to a file as a file id. When a new file is

created or an existing file is opened, the file descriptor is used for accessing the file.

File descriptor of the standard file streams - stdin, stdout and stderr are 0, 1 and 2,

respectively.

File Pointer

A file pointer specifies the location for a subsequent read/write operation in the file in

terms of bytes. Each file is considered as a sequence of bytes. Each open file is

associated with a file pointer that specifies an offset in bytes, relative to the beginning of

the file. When a file is opened, the file pointer is set to zero.

File Handling System Calls

The following table briefly describes the system calls related to file handling:

%eax Name %ebx %ecx %edx

2 sys_fork struct pt_regs - -

3 sys_read unsigned int char * size_t

4 sys_write unsigned int const char * size_t

5 sys_open const char * int int

6 sys_close unsigned int - -

8 sys_creat const char * int -

19 sys_lseek unsigned int off_t unsigned int

20. Assembly ─ File Management

Assembly Programming

74

The steps required for using the system calls are same, as we discussed earlier:

1. Put the system call number in the EAX register.

2. Store the arguments to the system call in the registers EBX, ECX, etc.

3. Call the relevant interrupt (80h).

4. The result is usually returned in the EAX register.

Creating and Opening a File

For creating and opening a file, perform the following tasks:

1. Put the system call sys_creat() number 8, in the EAX register

2. Put the filename in the EBX register

3. Put the file permissions in the ECX register

The system call returns the file descriptor of the created file in the EAX register, in case
of error, the error code is in the EAX register.

Opening an Existing File

For opening an existing file, perform the following tasks:

1. Put the system call sys_open() number 5, in the EAX register.

2. Put the filename in the EBX register.

3. Put the file access mode in the ECX register.

4. Put the file permissions in the EDX register.

The system call returns the file descriptor of the created file in the EAX register, in case

of error, the error code is in the EAX register.

Among the file access modes, most commonly used are: read-only (0), write-only (1),

and read-write (2).

Reading from a File

For reading from a file, perform the following tasks:

1. Put the system call sys_read() number 3, in the EAX register.

2. Put the file descriptor in the EBX register.

3. Put the pointer to the input buffer in the ECX register.

4. Put the buffer size, i.e., the number of bytes to read, in the EDX register.

The system call returns the number of bytes read in the EAX register, in case of error,
the error code is in the EAX register.

Assembly Programming

75

Writing to a File

For writing to a file, perform the following tasks:

1. Put the system call sys_write() number 4, in the EAX register.

2. Put the file descriptor in the EBX register.

3. Put the pointer to the output buffer in the ECX register.

4. Put the buffer size, i.e., the number of bytes to write, in the EDX register.

The system call returns the actual number of bytes written in the EAX register, in case of
error, the error code is in the EAX register.

Closing a File

For closing a file, perform the following tasks:

1. Put the system call sys_close() number 6, in the EAX register.

2. Put the file descriptor in the EBX register.

The system call returns, in case of error, the error code in the EAX register.

Updating a File

For updating a file, perform the following tasks:

1. Put the system call sys_lseek () number 19, in the EAX register.

2. Put the file descriptor in the EBX register.

3. Put the offset value in the ECX register.

4. Put the reference position for the offset in the EDX register.

The reference position could be:

 Beginning of file - value 0

 Current position - value 1

 End of file - value 2

The system call returns, in case of error, the error code in the EAX register.

Example

The following program creates and opens a file named myfile.txt, and writes a text

'Welcome to Tutorials Point' in this file. Next, the program reads from the file and stores
the data into a buffer named info. Lastly, it displays the text as stored in info.

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

;create the file

 mov eax, 8

Assembly Programming

76

 mov ebx, file_name

 mov ecx, 0777 ;read, write and execute by all

 int 0x80 ;call kernel

 mov [fd_out], eax

; write into the file

 mov edx,len ;number of bytes

 mov ecx, msg ;message to write

 mov ebx, [fd_out] ;file descriptor

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 ; close the file

 mov eax, 6

 mov ebx, [fd_out]

; write the message indicating end of file write

 mov eax, 4

 mov ebx, 1

 mov ecx, msg_done

 mov edx, len_done

 int 0x80

;open the file for reading

 mov eax, 5

 mov ebx, file_name

 mov ecx, 0 ;for read only access

 mov edx, 0777 ;read, write and execute by all

 int 0x80

 mov [fd_in], eax

;read from file

 mov eax, 3

 mov ebx, [fd_in]

 mov ecx, info

 mov edx, 26

 int 0x80

Assembly Programming

77

; close the file

 mov eax, 6

 mov ebx, [fd_in]

; print the info

 mov eax, 4

 mov ebx, 1

 mov ecx, info

 mov edx, 26

 int 0x80

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

file_name db 'myfile.txt'

msg db 'Welcome to Tutorials Point'

len equ $-msg

msg_done db 'Written to file', 0xa

len_done equ $-msg_done

section .bss

fd_out resb 1

fd_in resb 1

info resb 26

When the above code is compiled and executed, it produces the following result:

Written to file

Welcome to Tutorials Point

Assembly Programming

78

The sys_brk() system call is provided by the kernel, to allocate memory without the

need of moving it later. This call allocates memory right behind the application image in

the memory. This system function allows you to set the highest available address in the
data section.

This system call takes one parameter, which is the highest memory address needed to
be set. This value is stored in the EBX register.

In case of any error, sys_brk() returns -1 or returns the negative error code itself. The
following example demonstrates dynamic memory allocation.

Example

The following program allocates 16kb of memory using the sys_brk() system call:

section .text

 global _start ;must be declared for using gcc

_start: ;tell linker entry point

 mov eax, 45 ;sys_brk

 xor ebx, ebx

 int 80h

 add eax, 16384 ;number of bytes to be reserved

 mov ebx, eax

 mov eax, 45 ;sys_brk

 int 80h

 cmp eax, 0

 jl exit ;exit, if error

 mov edi, eax ;EDI = highest available address

 sub edi, 4 ;pointing to the last DWORD

 mov ecx, 4096 ;number of DWORDs allocated

 xor eax, eax ;clear eax

 std ;backward

 rep stosd ;repete for entire allocated area

 cld ;put DF flag to normal state

 mov eax, 4

 mov ebx, 1

21. Assembly ─ Memory Management

Assembly Programming

79

 mov ecx, msg

 mov edx, len

 int 80h ;print a message

exit:

 mov eax, 1

 xor ebx, ebx

 int 80h

section .data

msg db "Allocated 16 kb of memory!", 10

len equ $ - msg

When the above code is compiled and executed, it produces the following result:

Allocated 16 kb of memory!

