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About the Tutorial 

Assembly language is a low-level programming language for a computer or other 

programmable device specific to a particular computer architecture in contrast to most 

high-level programming languages, which are generally portable across multiple 

systems. Assembly language is converted into executable machine code by a utility 
program referred to as an assembler like NASM, MASM, etc. 

 

Audience 

This tutorial has been designed for those who want to learn the basics of assembly 

programming from scratch. This tutorial will give you enough understanding on assembly 
programming from where you can take yourself to higher levels of expertise. 

 

Prerequisites 

Before proceeding with this tutorial, you should have a basic understanding of Computer 

Programming terminologies. A basic understanding of any of the programming languages 

will help you in understanding the Assembly programming concepts and move fast on 
the learning track. 

 

Copyright & Disclaimer 

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point 

(I) Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or 

republish any contents or a part of contents of this e-book in any manner without written 
consent of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely 

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) 

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of 

our website or its contents including this tutorial. If you discover any errors on our 
website or in this tutorial, please notify us at contact@tutorialspoint.com 
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What is Assembly Language? 

Each personal computer has a microprocessor that manages the computer's arithmetical, 
logical, and control activities. 

Each family of processors has its own set of instructions for handling various operations 

such as getting input from keyboard, displaying information on screen, and performing 

various other jobs. These set of instructions are called 'machine language instructions'. 

A processor understands only machine language instructions, which are strings of 1's 

and 0's. However, machine language is too obscure and complex for using in software 

development. So, the low-level assembly language is designed for a specific family of 

processors that represents various instructions in symbolic code and a more 

understandable form. 

Advantages of Assembly Language 

Having an understanding of assembly language makes one aware of:  

 How programs interface with OS, processor, and BIOS; 

 How data is represented in memory and other external devices; 

 How the processor accesses and executes instruction; 

 How instructions access and process data; 

 How a program accesses external devices. 

Other advantages of using assembly language are: 

 It requires less memory and execution time; 

 It allows hardware-specific complex jobs in an easier way; 

 It is suitable for time-critical jobs; 

 It is most suitable for writing interrupt service routines and other memory 
resident programs. 

Basic Features of PC Hardware 

The main internal hardware of a PC consists of processor, memory, and registers. 

Registers are processor components that hold data and address. To execute a program, 

the system copies it from the external device into the internal memory. The processor 
executes the program instructions. 

The fundamental unit of computer storage is a bit; it could be ON (1) or OFF (0). A 

group of nine related bits makes a byte, out of which eight bits are used for data and the 

last one is used for parity. According to the rule of parity, the number of bits that are ON 
(1) in each byte should always be odd. 

1.  Assembly ─ Introduction 
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So, the parity bit is used to make the number of bits in a byte odd. If the parity is even, 

the system assumes that there had been a parity error (though rare), which might have 
been caused due to hardware fault or electrical disturbance. 

The processor supports the following data sizes: 

 Word: a 2-byte data item 

 Doubleword: a 4-byte (32 bit) data item 

 Quadword: an 8-byte (64 bit) data item 

 Paragraph: a 16-byte (128 bit) area 

 Kilobyte: 1024 bytes 

 Megabyte: 1,048,576 bytes 

Binary Number System 

Every number system uses positional notation, i.e., each position in which a digit is 

written has a different positional value. Each position is power of the base, which is 2 for 
binary number system, and these powers begin at 0 and increase by 1. 

The following table shows the positional values for an 8-bit binary number, where all bits 

are set ON. 

Bit value 1 1 1 1 1 1 1 1 

Position value 

as a power of 

base 2 

128 64 32 16 8 4 2 1 

Bit number 7 6 5 4 3 2 1 0 

The value of a binary number is based on the presence of 1 bits and their positional 

value. So, the value of a given binary number is:  

1 + 2 + 4 + 8 +16 + 32 + 64 + 128 = 255  

which is same as 28 - 1. 

Hexadecimal Number System 

Hexadecimal number system uses base 16. The digits in this system range from 0 to 15. 

By convention, the letters A through F is used to represent the hexadecimal digits 
corresponding to decimal values 10 through 15. 

Hexadecimal numbers in computing is used for abbreviating lengthy binary 

representations. Basically, hexadecimal number system represents a binary data by 

dividing each byte in half and expressing the value of each half-byte. The following table 
provides the decimal, binary, and hexadecimal equivalents: 
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Decimal number Binary representation Hexadecimal representation 

0 0 0 

1 1 1 

2 10 2 

3 11 3 

4 100 4 

5 101 5 

6 110 6 

7 111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 C 

13 1101 D 

14 1110 E 

15 1111 F 
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To convert a binary number to its hexadecimal equivalent, break it into groups of 4 

consecutive groups each, starting from the right, and write those groups over the 
corresponding digits of the hexadecimal number. 

Example: Binary number 1000 1100 1101 0001 is equivalent to hexadecimal - 8CD1 

To convert a hexadecimal number to binary, just write each hexadecimal digit into its 4-
digit binary equivalent. 

Example: Hexadecimal number FAD8 is equivalent to binary - 1111 1010 1101 1000 

Binary Arithmetic 

The following table illustrates four simple rules for binary addition: 

(i) (ii) (iii) (iv) 

   

1 

0 1 1 1 

+0 +0 +1 +1 

=0 =1 =10 =11 

 

Rules (iii) and (iv) show a carry of a 1-bit into the next left position. 

Example 

Decimal Binary 

60 00111100 

+42 00101010 

102 01100110 

 

A negative binary value is expressed in two's complement notation. According to this 

rule, to convert a binary number to its negative value is to reverse its bit values and add 

1. 
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Example 

Number 53 00110101 

Reverse the bits 11001010 

Add 1 1 

Number -53 11001011 

 

To subtract one value from another, convert the number being subtracted to two's 

complement format and add the numbers. 

Example 

Subtract 42 from 53. 

Number 53 00110101 

Number 42 00101010 

Reverse the bits of 42 11010101 

Add 1 1 

Number -42 11010110 

53 - 42 = 11 00001011 

 

Overflow of the last 1 bit is lost. 

Addressing Data in Memory 

The process through which the processor controls the execution of instructions is 

referred as the fetch-decode-execute cycle or the execution cycle. It consists of 

three continuous steps: 

 Fetching the instruction from memory 

 Decoding or identifying the instruction 

 Executing the instruction 

The processor may access one or more bytes of memory at a time. Let us consider a 

hexadecimal number 0725H. This number will require two bytes of memory. The high-
order byte or most significant byte is 07 and the low-order byte is 25. 
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The processor stores data in reverse-byte sequence, i.e., a low-order byte is stored in a 

low memory address and a high-order byte in high memory address. So, if the processor 

brings the value 0725H from register to memory, it will transfer 25 first to the lower 
memory address and 07 to the next memory address. 

 

x: memory address 

When the processor gets the numeric data from memory to register, it again reverses 

the bytes. There are two kinds of memory addresses: 

 Absolute address – a direct reference of specific location. 

 Segment address (or offset) – starting address of a memory segment with the 
offset value. 
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Try it Option Online 

We already have set up NASM assembler to experiment with Assembly programming 

online, so that you can execute all the available examples online at the same time when 

you are doing your theory work. This gives you confidence in what you are reading and 

to check the result with different options. Feel free to modify any example and execute it 
online. 

Try the following example using our online compiler option available at  

http://www.compileonline.com/  

section .text 

    global _start   ;must be declared for linker (ld) 

_start:             ;tells linker entry point 

    mov edx,len     ;message length 

    mov ecx,msg     ;message to write 

    mov ebx,1       ;file descriptor (stdout) 

    mov eax,4       ;system call number (sys_write) 

    int 0x80        ;call kernel 

  

    mov eax,1       ;system call number (sys_exit) 

    int 0x80        ;call kernel 

 

section .data 

msg db 'Hello, world!', 0xa  ;our dear string 

len equ $ - msg     ;length of our dear string 

For most of the examples given in this tutorial, you will find a Try it option in our 

website code sections at the top right corner that will take you to the online compiler. So 
just make use of it and enjoy your learning. 

Local Environment Setup 

Assembly language is dependent upon the instruction set and the architecture of the 

processor. In this tutorial, we focus on Intel 32 processors like Pentium. To follow this 

tutorial, you will need: 

 An IBM PC or any equivalent compatible computer 

 A copy of Linux operating system 

 A copy of NASM assembler program 

 

2.  Assembly ─ Enviornment Setup 

http://www.compileonline.com/
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There are many good assembler programs such as: 

 Microsoft Assembler (MASM) 

 Borland Turbo Assembler (TASM) 

 The GNU assembler (GAS) 

We will use the NASM assembler, as it is: 

 Free. You can download it from various web sources. 

 Well-documented and you will get lots of information on net. 

 Could be used on both Linux and Windows. 

Installing NASM 

If you select "Development Tools" while installing Linux, you may get NASM installed 

along with the Linux operating system and you do not need to download and install it 

separately. For checking whether you already have NASM installed, take the following 
steps: 

1. Open a Linux terminal. 

2. Type whereis nasm and press ENTER. 

3. If it is already installed, then a line like, nasm: /usr/bin/nasm appears. Otherwise, 

you will see just nasm:, then you need to install NASM. 

To install NASM, take the following steps: 

1. Check The netwide assembler (NASM) website for the latest version. 

2. Download the Linux source archive nasm-X.XX.ta.gz, where X.XX is the NASM 
version number in the archive. 

3. Unpack the archive into a directory which creates a subdirectory nasm-X. XX. 

4. cd to nasm-X. XX and type ./configure . This shell script will find the best C 

compiler to use and set up Makefiles accordingly. 

5. Type make to build the nasm and ndisasm binaries. 

6. Type make install to install nasm and ndisasm in /usr/local/bin and to install the 

man pages. 

This should install NASM on your system. Alternatively, you can use an RPM distribution 
for the Fedora Linux. This version is simpler to install, just double-click the RPM file. 
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An assembly program can be divided into three sections: 

 The data section, 

 The bss section, and 

 The text section. 

The data Section 

The data section is used for declaring initialized data or constants. This data does not 

change at runtime. You can declare various constant values, file names, or buffer size, 
etc., in this section. 

The syntax for declaring data section is: 

section .data 

The bss Section 

The bss section is used for declaring variables. The syntax for declaring bss section is: 

section .bss 

The text section 

The text section is used for keeping the actual code. This section must begin with the 

declaration global _start, which tells the kernel where the program execution begins. 

The syntax for declaring text section is: 

section .text 

   global _start 

_start: 

Comments 

Assembly language comment begins with a semicolon (;). It may contain any printable 
character including blank. It can appear on a line by itself, like: 

; This program displays a message on screen 

or, on the same line along with an instruction, like: 

add eax ,ebx    ; adds ebx to eax 

3.  Assembly ─ Basic Syntax 
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Assembly Language Statements 

Assembly language programs consist of three types of statements: 

 Executable instructions or instructions, 

 Assembler directives or pseudo-ops, and 

 Macros. 

The executable instructions or simply instructions tell the processor what to do. Each 

instruction consists of an operation code (opcode). Each executable instruction 

generates one machine language instruction. 

The assembler directives or pseudo-ops tell the assembler about the various aspects 

of the assembly process. These are non-executable and do not generate machine 
language instructions. 

Macros are basically a text substitution mechanism. 

Syntax of Assembly Language Statements 

Assembly language statements are entered one statement per line. Each statement 

follows the following format: 

[label]   mnemonic   [operands]   [;comment] 

The fields in the square brackets are optional. A basic instruction has two parts, the first 

one is the name of the instruction (or the mnemonic), which is to be executed, and the 
second are the operands or the parameters of the command. 

Following are some examples of typical assembly language statements: 

INC COUNT        ; Increment the memory variable COUNT 

MOV TOTAL, 48    ; Transfer the value 48 in the  

                 ; memory variable TOTAL 

ADD AH, BH       ; Add the content of the  

                 ; BH register into the AH register 

AND MASK1, 128   ; Perform AND operation on the  

                 ; variable MASK1 and 128 

ADD MARKS, 10    ; Add 10 to the variable MARKS 

MOV AL, 10       ; Transfer the value 10 to the AL register 

The Hello World Program in Assembly 

The following assembly language code displays the string 'Hello World' on the screen: 

section .text 

    global _start   ;must be declared for linker (ld) 

_start:             ;tells linker entry point 
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    mov edx,len     ;message length 

    mov ecx,msg     ;message to write 

    mov ebx,1       ;file descriptor (stdout) 

    mov eax,4       ;system call number (sys_write) 

    int 0x80        ;call kernel 

  

    mov eax,1       ;system call number (sys_exit) 

    int 0x80        ;call kernel 

 

section .data 

msg db 'Hello, world!', 0xa  ;our dear string 

len equ $ - msg              ;length of our dear string 

When the above code is compiled and executed, it produces the following result: 

Hello, world! 

Compiling and Linking an Assembly Program in NASM 

Make sure you have set the path of nasm and ld binaries in your PATH environment 

variable. Now, take the following steps for compiling and linking the above program: 

1. Type the above code using a text editor and save it as hello.asm. 

2. Make sure that you are in the same directory as where you saved hello.asm. 

3. To assemble the program, type nasm -f elf hello.asm 

4. If there is any error, you will be prompted about that at this stage. Otherwise, an 
object file of your program named hello.o will be created. 

5. To link the object file and create an executable file named hello, type ld -m 

elf_i386 -s -o hello hello.o 

6. Execute the program by typing ./hello 

If you have done everything correctly, it will display ‘Hello, world!’ on the screen. 
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We have already discussed the three sections of an assembly program. These sections 
represent various memory segments as well. 

Interestingly, if you replace the section keyword with segment, you will get the same 
result. Try the following code: 

segment  .text          ;code segment 

    global _start    ;must be declared for linker  

_start:  ;tell linker entry point 

 mov edx,len  ;message length 

 mov ecx,msg       ;message to write 

 mov ebx,1  ;file descriptor (stdout) 

 mov eax,4  ;system call number (sys_write) 

 int 0x80  ;call kernel 

 

 mov eax,1  ;system call number (sys_exit) 

 int 0x80  ;call kernel 

 

segment .data                 ;data segment 

msg db 'Hello, world!',0xa   ;our dear string 

len equ $ - msg            ;length of our dear string 

When the above code is compiled and executed, it produces the following result: 

Hello, world! 

Memory Segments 

A segmented memory model divides the system memory into groups of independent 

segments referenced by pointers located in the segment registers. Each segment is used 

to contain a specific type of data. One segment is used to contain instruction codes, 

another segment stores the data elements, and a third segment keeps the program 
stack. 

In the light of the above discussion, we can specify various memory segments as: 

 Data segment - It is represented by .data section and the .bss. The .data 

section is used to declare the memory region, where data elements are stored for 

the program. This section cannot be expanded after the data elements are 
declared, and it remains static throughout the program. 

The .bss section is also a static memory section that contains buffers for data to 
be declared later in the program. This buffer memory is zero-filled. 

4.  Assembly ─ Memory Segments 
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 Code segment - It is represented by .text section. This defines an area in 

memory that stores the instruction codes. This is also a fixed area. 

 Stack - This segment contains data values passed to functions and procedures 

within the program. 
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Processor operations mostly involve processing data. This data can be stored in memory 

and accessed from thereon. However, reading data from and storing data into memory 

slows down the processor, as it involves complicated processes of sending the data 

request across the control bus and into the memory storage unit and getting the data 
through the same channel. 

To speed up the processor operations, the processor includes some internal memory 
storage locations, called registers. 

The registers store data elements for processing without having to access the memory. A 

limited number of registers are built into the processor chip. 

Processor Registers 

There are ten 32-bit and six 16-bit processor registers in IA-32 architecture. The 
registers are grouped into three categories: 

 General registers, 

 Control registers, and 

 Segment registers. 

The general registers are further divided into the following groups: 

 Data registers, 

 Pointer registers, and 

 Index registers. 

Data Registers 

Four 32-bit data registers are used for arithmetic, logical, and other operations. These 
32-bit registers can be used in three ways: 

 As complete 32-bit data registers: EAX, EBX, ECX, EDX. 

 Lower halves of the 32-bit registers can be used as four 16-bit data registers: AX, 
BX, CX and DX. 

 Lower and higher halves of the above-mentioned four 16-bit registers can be 
used as eight 8-bit data registers: AH, AL, BH, BL, CH, CL, DH, and DL. 

5.  Assembly ─ Registers 



Assembly Programming 

15 

 

 

Some of these data registers have specific use in arithmetical operations. 

AX is the primary accumulator; it is used in input/output and most arithmetic 

instructions. For example, in multiplication operation, one operand is stored in EAX or AX 

or AL register according to the size of the operand. 

BX is known as the base register, as it could be used in indexed addressing. 

CX is known as the count register, as the ECX, CX registers store the loop count in 

iterative operations. 

DX is known as the data register. It is also used in input/output operations. It is also 

used with AX register along with DX for multiply and divide operations involving large 
values. 

Pointer Registers 

The pointer registers are 32-bit EIP, ESP, and EBP registers and corresponding 16-bit 
right portions IP, SP, and BP. There are three categories of pointer registers: 

 Instruction Pointer (IP) - The 16-bit IP register stores the offset address of the 

next instruction to be executed. IP in association with the CS register (as CS:IP) 
gives the complete address of the current instruction in the code segment. 

 Stack Pointer (SP) - The 16-bit SP register provides the offset value within the 

program stack. SP in association with the SS register (SS:SP) refers to be current 
position of data or address within the program stack. 

 Base Pointer (BP) - The 16-bit BP register mainly helps in referencing the 

parameter variables passed to a subroutine. The address in SS register is 

combined with the offset in BP to get the location of the parameter. BP can also 

be combined with DI and SI as base register for special addressing. 

 



Assembly Programming 

16 

 

Index Registers 

The 32-bit index registers, ESI and EDI, and their 16-bit rightmost portions, SI and DI, 

are used for indexed addressing and sometimes used in addition and subtraction. There 
are two sets of index pointers: 

 Source Index (SI) - It is used as source index for string operations. 

 Destination Index (DI) - It is used as destination index for string operations. 

 

Control Registers 

The 32-bit instruction pointer register and the 32-bit flags register combined are 
considered as the control registers. 

Many instructions involve comparisons and mathematical calculations and change the 

status of the flags and some other conditional instructions test the value of these status 

flags to take the control flow to other location. 

The common flag bits are: 

 Overflow Flag (OF): It indicates the overflow of a high-order bit (leftmost bit) 

of data after a signed arithmetic operation. 

 Direction Flag (DF): It determines left or right direction for moving or 

comparing string data. When the DF value is 0, the string operation takes left-to-

right direction and when the value is set to 1, the string operation takes right-to-

left direction. 

 Interrupt Flag (IF): It determines whether the external interrupts like keyboard 

entry, etc., are to be ignored or processed. It disables the external interrupt 
when the value is 0 and enables interrupts when set to 1. 

 Trap Flag (TF): It allows setting the operation of the processor in single-step 

mode. The DEBUG program we used sets the trap flag, so we could step through 

the execution one instruction at a time. 

 Sign Flag (SF): It shows the sign of the result of an arithmetic operation. This 

flag is set according to the sign of a data item following the arithmetic operation. 

The sign is indicated by the high-order of leftmost bit. A positive result clears the 
value of SF to 0 and negative result sets it to 1. 

 Zero Flag (ZF): It indicates the result of an arithmetic or comparison operation. 

A nonzero result clears the zero flag to 0, and a zero result sets it to 1. 

 Auxiliary Carry Flag (AF): It contains the carry from bit 3 to bit 4 following an 

arithmetic operation; used for specialized arithmetic. The AF is set when a 1-byte 
arithmetic operation causes a carry from bit 3 into bit 4. 
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 Parity Flag (PF): It indicates the total number of 1-bits in the result obtained 

from an arithmetic operation. An even number of 1-bits clears the parity flag to 0 
and an odd number of 1-bits sets the parity flag to 1. 

 Carry Flag (CF): It contains the carry of 0 or 1 from a high-order bit (leftmost) 

after an arithmetic operation. It also stores the contents of last bit of 
a shift or rotate operation. 

The following table indicates the position of flag bits in the 16-bit Flags register: 

Flag:     O D I T S Z  A  P  C 

Bit no: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

Segment Registers 

Segments are specific areas defined in a program for containing data, code and stack. 

There are three main segments: 

 Code Segment: It contains all the instructions to be executed. A 16-bit Code 

Segment register or CS register stores the starting address of the code segment. 

 Data Segment: It contains data, constants and work areas. A 16-bit Data 
Segment register or DS register stores the starting address of the data segment. 

 Stack Segment: It contains data and return addresses of procedures or 

subroutines. It is implemented as a 'stack' data structure. The Stack Segment 
register or SS register stores the starting address of the stack. 

Apart from the DS, CS and SS registers, there are other extra segment registers - ES 

(extra segment), FS and GS, which provide additional segments for storing data. 

In assembly programming, a program needs to access the memory locations. All 

memory locations within a segment are relative to the starting address of the segment. 

A segment begins in an address evenly divisible by 16 or hexadecimal 10. So, the 

rightmost hex digit in all such memory addresses is 0, which is not generally stored in 

the segment registers. 

The segment registers stores the starting addresses of a segment. To get the exact 

location of data or instruction within a segment, an offset value (or displacement) is 

required. To reference any memory location in a segment, the processor combines the 

segment address in the segment register with the offset value of the location. 

Example: 

Look at the following simple program to understand the use of registers in assembly 

programming. This program displays 9 stars on the screen along with a simple message: 

section .text 

    global  _start ;must be declared for linker (gcc) 

_start:    ;tell linker entry point 

 mov edx,len ;message length 

 mov ecx,msg ;message to write 
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 mov ebx,1  ;file descriptor (stdout) 

 mov eax,4  ;system call number (sys_write) 

 int 0x80  ;call kernel 

  

 mov edx,9  ;message length 

 mov ecx,s2 ;message to write 

 mov ebx,1  ;file descriptor (stdout) 

 mov eax,4  ;system call number (sys_write) 

 int 0x80   ;call kernel 

 mov eax,1  ;system call number (sys_exit) 

 int 0x80  ;call kernel 

 

section .data 

msg db 'Displaying 9 stars',0xa ;a message 

len equ $ - msg           ;length of message 

s2 times 9 db '*' 

When the above code is compiled and executed, it produces the following result: 

Displaying 9 stars 

********* 
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System calls are APIs for the interface between the user space and the kernel space. We 

have already used the system calls, sys_write and sys_exit, for writing into the screen 

and exiting from the program, respectively. 

Linux System Calls 

You can make use of Linux system calls in your assembly programs. You need to take 
the following steps for using Linux system calls in your program: 

 Put the system call number in the EAX register. 

 Store the arguments to the system call in the registers EBX, ECX, etc. 

 Call the relevant interrupt (80h). 

 The result is usually returned in the EAX register. 

There are six registers that store the arguments of the system call used. These are the 

EBX, ECX, EDX, ESI, EDI, and EBP. These registers take the consecutive arguments, 

starting with the EBX register. If there are more than six arguments, then the memory 
location of the first argument is stored in the EBX register. 

The following code snippet shows the use of the system call sys_exit: 

mov eax,1  ; system call number (sys_exit) 

int 0x80  ; call kernel 

The following code snippet shows the use of the system call sys_write: 

mov edx,4  ; message length 

mov ecx,msg ; message to write 

mov ebx,1  ; file descriptor (stdout) 

mov eax,4  ; system call number (sys_write) 

int 0x80  ; call kernel 

All the syscalls are listed in /usr/include/asm/unistd.h, together with their numbers (the 

value to put in EAX before you call int 80h). 

The following table shows some of the system calls used in this tutorial: 

%eax Name %ebx %ecx %edx %esx %edi 

1 sys_exit int - - - - 

2 sys_fork struct pt_regs - - - - 

6.  Assembly ─ System Calls 
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3 sys_read unsigned int char * size_t - - 

4 sys_write unsigned int const char * size_t - - 

5 sys_open const char * int int - - 

6 sys_close unsigned int - - - - 

 

Example 

The following example reads a number from the keyboard and displays it on the screen: 

section  .data ;Data segment 

    userMsg db 'Please enter a number: ' ;Ask the user to enter a number 

    lenUserMsg equ $-userMsg             ;The length of the message 

    dispMsg db 'You have entered: ' 

    lenDispMsg equ $-dispMsg                  

 

section .bss            ;Uninitialized data 

    num resb 5 

section .text           ;Code Segment 

       global _start 

_start: 

       ;User prompt 

       mov eax, 4 

       mov ebx, 1 

       mov ecx, userMsg 

       mov edx, lenUserMsg 

       int 80h 

 

       ;Read and store the user input 

       mov eax, 3 

       mov ebx, 2 

       mov ecx, num   

       mov edx, 5       ;5 bytes (numeric, 1 for sign) of that information 

       int 80h 

       ;Output the message 'The entered number is: ' 

       mov eax, 4 
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       mov ebx, 1 

       mov ecx, dispMsg 

       mov edx, lenDispMsg 

       int 80h   

 

       ;Output the number entered 

       mov eax, 4 

       mov ebx, 1 

       mov ecx, num 

       mov edx, 5 

       int 80h   

; Exit code 

       mov eax, 1 

       mov ebx, 0 

       int 80h 

When the above code is compiled and executed, it produces the following result: 

Please enter a number: 

1234   

You have entered:1234 
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Most assembly language instructions require operands to be processed. An operand 

address provides the location, where the data to be processed is stored. Some 

instructions do not require an operand, whereas some other instructions may require 
one, two, or three operands. 

When an instruction requires two operands, the first operand is generally the 

destination, which contains data in a register or memory location and the second 

operand is the source. Source contains either the data to be delivered (immediate 

addressing) or the address (in register or memory) of the data. Generally, the source 
data remains unaltered after the operation. 

The three basic modes of addressing are: 

 Register addressing 

 Immediate addressing 

 Memory addressing 

Register Addressing 

In this addressing mode, a register contains the operand. Depending upon the 
instruction, the register may be the first operand, the second operand or both. 

For example, 

MOV DX, TAX_RATE    ; Register in first operand 

MOV COUNT, CX    ; Register in second operand 

MOV EAX, EBX    ; Both the operands are in registers 

As processing data between registers does not involve memory, it provides fastest 
processing of data. 

Immediate Addressing 

An immediate operand has a constant value or an expression. When an instruction with 

two operands uses immediate addressing, the first operand may be a register or 

memory location, and the second operand is an immediate constant. The first operand 
defines the length of the data. 

For example, 

BYTE_VALUE  DB  150    ; A byte value is defined 

WORD_VALUE  DW  300    ; A word value is defined 

ADD  BYTE_VALUE, 65    ; An immediate operand 65 is added 

MOV  AX, 45H           ; Immediate constant 45H is transferred to AX 

7.  Assembly ─ Addressing Modes 
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Direct Memory Addressing 

When operands are specified in memory addressing mode, direct access to main 

memory, usually to the data segment, is required. This way of addressing results in 

slower processing of data. To locate the exact location of data in memory, we need the 

segment start address, which is typically found in the DS register and an offset value. 
This offset value is also called effective address. 

In direct addressing mode, the offset value is specified directly as part of the instruction, 

usually indicated by the variable name. The assembler calculates the offset value and 

maintains a symbol table, which stores the offset values of all the variables used in the 
program. 

In direct memory addressing, one of the operands refers to a memory location and the 
other operand references a register. 

For example, 

ADD BYTE_VALUE, DL ; Adds the register in the memory location 

MOV BX, WORD_VALUE ; Operand from the memory is added to register 

Direct-Offset Addressing 

This addressing mode uses the arithmetic operators to modify an address. For example, 
look at the following definitions that define tables of data: 

BYTE_TABLE DB  14, 15, 22, 45      ; Tables of bytes 

WORD_TABLE DW  134, 345, 564, 123  ; Tables of words 

The following operations access data from the tables in the memory into registers: 

MOV CL, BYTE_TABLE[2] ; Gets the 3rd element of the BYTE_TABLE 

MOV CL, BYTE_TABLE + 2 ; Gets the 3rd element of the BYTE_TABLE 

MOV CX, WORD_TABLE[3] ; Gets the 4th element of the WORD_TABLE 

MOV CX, WORD_TABLE + 3 ; Gets the 4th element of the WORD_TABLE 

Indirect Memory Addressing 

This addressing mode utilizes the computer's ability of Segment:Offset addressing. 

Generally, the base registers EBX, EBP (or BX, BP) and the index registers (DI, SI), 
coded within square brackets for memory references, are used for this purpose. 

Indirect addressing is generally used for variables containing several elements like, 

arrays. Starting address of the array is stored in, say, the EBX register. 

The following code snippet shows how to access different elements of the variable. 

MY_TABLE TIMES 10 DW 0  ; Allocates 10 words (2 bytes) each initialized to 0 

MOV EBX, [MY_TABLE]     ; Effective Address of MY_TABLE in EBX 

MOV [EBX], 110          ; MY_TABLE[0] = 110 
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ADD EBX, 2              ; EBX = EBX +2 

MOV [EBX], 123          ; MY_TABLE[1] = 123 

The MOV Instruction 

We have already used the MOV instruction that is used for moving data from one storage 
space to another. The MOV instruction takes two operands. 

Syntax 

The syntax of the MOV instruction is: 

MOV  destination, source 

The MOV instruction may have one of the following five forms: 

MOV  register, register 

MOV  register, immediate 

MOV  memory, immediate 

MOV  register, memory 

MOV  memory, register 

Please note that: 

 Both the operands in MOV operation should be of same size 

 The value of source operand remains unchanged 

The MOV instruction causes ambiguity at times. For example, look at the statements: 

MOV  EBX, [MY_TABLE]   ; Effective Address of MY_TABLE in EBX 

MOV  [EBX], 110       ; MY_TABLE[0] = 110 

It is not clear whether you want to move a byte equivalent or word equivalent of the 
number 110. In such cases, it is wise to use a type specifier. 

Following table shows some of the common type specifiers: 

Type Specifier Bytes addressed 

BYTE 1 

WORD 2 

DWORD 4 

QWORD 8 
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TBYTE 10 

 

Example 

The following program illustrates some of the concepts discussed above. It stores a 

name 'Zara Ali' in the data section of the memory, then changes its value to another 
name 'Nuha Ali' programmatically and displays both the names. 

section .text 

    global  _start    ;must be declared for linker (ld) 

_start:    ;tell linker entry point 

  

;writing the name 'Zara Ali' 

 mov edx,9       ;message length 

 mov ecx, name   ;message to write 

 mov ebx,1       ;file descriptor (stdout) 

 mov eax,4       ;system call number (sys_write) 

 int 0x80        ;call kernel 

  

 mov [name],  dword 'Nuha'    ; Changed the name to Nuha Ali 

;writing the name 'Nuha Ali' 

 mov edx,8       ;message length 

 mov ecx,name    ;message to write 

 mov ebx,1       ;file descriptor (stdout) 

 mov eax,4       ;system call number (sys_write) 

 int 0x80        ;call kernel 

 mov eax,1       ;system call number (sys_exit) 

 int 0x80        ;call kernel 

 

section .data 

name db 'Zara Ali ' 

When the above code is compiled and executed, it produces the following result: 

Zara Ali Nuha Ali 
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NASM provides various define directives for reserving storage space for variables. The 

define assembler directive is used for allocation of storage space. It can be used to 

reserve as well as initialize one or more bytes. 

Allocating Storage Space for Initialized Data 

The syntax for storage allocation statement for initialized data is: 

[variable-name]    define-directive    initial-value   [,initial-value]... 

Where, variable-name is the identifier for each storage space. The assembler associates 

an offset value for each variable name defined in the data segment. 

There are five basic forms of the define directive: 

Directive Purpose Storage Space 

DB Define Byte allocates 1 byte 

DW Define Word allocates 2 bytes 

DD Define Doubleword allocates 4 bytes 

DQ Define Quadword allocates 8 bytes 

DT Define Ten Bytes allocates 10 bytes 

 

Following are some examples of using define directives: 

choice  DB 'y' 

number  DW 12345 

neg_number  DW -12345 

big_number  DQ 123456789 

real_number1 DD 1.234 

real_number2 DQ 123.456 

Please note that: 

 Each byte of character is stored as its ASCII value in hexadecimal. 

 Each decimal value is automatically converted to its 16-bit binary equivalent and 
stored as a hexadecimal number. 

8.  Assembly ─ Variables 
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 Processor uses the little-endian byte ordering. 

 Negative numbers are converted to its 2's complement representation. 

 Short and long floating-point numbers are represented using 32 or 64 bits, 

respectively. 

The following program shows the use of define directive: 

section .text 

    global _start    ;must be declared for linker (gcc) 

_start:    ;tell linker entry point 

 

 mov edx,1  ;message length 

 mov ecx,choice ;message to write 

 mov ebx,1  ;file descriptor (stdout) 

 mov eax,4  ;system call number (sys_write) 

 int 0x80  ;call kernel 

 

 mov eax,1  ;system call number (sys_exit) 

 int 0x80  ;call kernel 

 

section .data 

choice DB 'y' 

When the above code is compiled and executed, it produces the following result: 

y 

Allocating Storage Space for Uninitialized Data 

The reserve directives are used for reserving space for uninitialized data. The reserve 

directives take a single operand that specifies the number of units of space to be 

reserved. Each define directive has a related reserve directive. 

There are five basic forms of the reserve directive: 

Directive Purpose 

RESB Reserve a Byte 

RESW Reserve a Word 

RESD Reserve a Doubleword 
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RESQ Reserve a Quadword 

REST Reserve a Ten Bytes 

Multiple Definitions 

You can have multiple data definition statements in a program. For example: 

choice   DB  'Y'   ;ASCII of y = 79H 

number1   DW  12345  ;12345D = 3039H 

number2   DD    12345679  ;123456789D = 75BCD15H 

The assembler allocates contiguous memory for multiple variable definitions. 

Multiple Initializations 

The TIMES directive allows multiple initializations to the same value. For example, an 

array named marks of size 9 can be defined and initialized to zero using the following 

statement: 

marks  TIMES  9  DW  0 

The TIMES directive is useful in defining arrays and tables. The following program 

displays 9 asterisks on the screen: 

section .text 

    global _start    ;must be declared for linker (ld) 

_start:    ;tell linker entry point 

 mov edx,9  ;message length 

 mov ecx, stars ;message to write 

 mov ebx,1  ;file descriptor (stdout) 

 mov eax,4  ;system call number (sys_write) 

 int 0x80  ;call kernel 

 

 mov eax,1  ;system call number (sys_exit) 

 int 0x80  ;call kernel 

 

section .data 

stars   times 9 db '*' 

When the above code is compiled and executed, it produces the following result: 

********* 
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There are several directives provided by NASM that define constants. We have already 
used the EQU directive in previous chapters. We will particularly discuss three directives: 

 EQU 

 %assign 

 %define 

The EQU Directive 

The EQU directive is used for defining constants. The syntax of the EQU directive is as 

follows: 

CONSTANT_NAME EQU expression 

For example, 

TOTAL_STUDENTS equ 50 

You can then use this constant value in your code, like: 

mov  ecx,  TOTAL_STUDENTS  

cmp  eax,  TOTAL_STUDENTS 

The operand of an EQU statement can be an expression: 

LENGTH equ 20 

WIDTH  equ 10 

AREA   equ length * width 

Above code segment would define AREA as 200. 

Example 

The following example illustrates the use of the EQU directive: 

SYS_EXIT  equ 1 

SYS_WRITE equ 4 

STDIN     equ 0 

STDOUT    equ 1 

section  .text 

   global _start    ;must be declared for using gcc 

_start:   ;tell linker entry point 

 mov eax, SYS_WRITE          

9.  Assembly ─ Constants 
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    mov ebx, STDOUT          

    mov ecx, msg1          

     mov edx, len1  

     int 0x80                 

  

 mov eax, SYS_WRITE          

    mov ebx, STDOUT          

    mov ecx, msg2          

     mov edx, len2  

     int 0x80  

  

 mov eax, SYS_WRITE          

    mov ebx, STDOUT          

    mov ecx, msg3          

     mov edx, len3  

     int 0x80 

        mov eax,SYS_EXIT    ;system call number (sys_exit) 

        int 0x80            ;call kernel 

 

section  .data 

msg1 db 'Hello, programmers!',0xA,0xD   

len1 equ $ - msg1    

msg2 db 'Welcome to the world of,', 0xA,0xD  

len2 equ $ - msg2  

msg3 db 'Linux assembly programming! ' 

len3 equ $- msg3 

When the above code is compiled and executed, it produces the following result: 

Hello, programmers! 

Welcome to the world of, 

Linux assembly programming! 

The %assign Directive 

The %assign directive can be used to define numeric constants like the EQU directive. 

This directive allows redefinition. For example, you may define the constant TOTAL as: 

%assign TOTAL 10 
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Later in the code, you can redefine it as: 

%assign  TOTAL  20 

This directive is case-sensitive. 

The %define Directive 

The %define directive allows defining both numeric and string constants. This directive 

is similar to the #define in C. For example, you may define the constant PTR as: 

%define PTR [EBP+4] 

The above code replaces PTR by [EBP+4]. 

This directive also allows redefinition and it is case-sensitive. 
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The INC Instruction 

The INC instruction is used for incrementing an operand by one. It works on a single 
operand that can be either in a register or in memory. 

Syntax 

The INC instruction has the following syntax: 

INC destination 

The operand destination could be an 8-bit, 16-bit or 32-bit operand. 

Example 

INC EBX   ; Increments 32-bit register 

INC DL       ; Increments 8-bit register 

INC [count]  ; Increments the count variable 

The DEC Instruction 

The DEC instruction is used for decrementing an operand by one. It works on a single 
operand that can be either in a register or in memory. 

Syntax 

The DEC instruction has the following syntax: 

DEC destination 

The operand destination could be an 8-bit, 16-bit or 32-bit operand. 

Example 

segment .data 

 count dw  0 

 value db  15 

segment .text 

 inc [count] 

 dec [value] 

 mov ebx, count 

 inc word [ebx] 

 mov esi, value 

10.  Assembly ─ Arithmetic Instructions 
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 dec byte [esi] 

The ADD and SUB Instructions 

The ADD and SUB instructions are used for performing simple addition/subtraction of 

binary data in byte, word and doubleword size, i.e., for adding or subtracting 8-bit, 16-
bit or 32-bit operands, respectively. 

Syntax 

The ADD and SUB instructions have the following syntax: 

ADD/SUB destination, source 

The ADD/SUB instruction can take place between: 

 Register to register 

 Memory to register 

 Register to memory 

 Register to constant data 

 Memory to constant data 

However, like other instructions, memory-to-memory operations are not possible using 

ADD/SUB instructions. An ADD or SUB operation sets or clears the overflow and carry 
flags. 

Example 

The following example will ask two digits from the user, store the digits in the EAX and 

EBX register, respectively, add the values, store the result in a memory location 'res' and 
finally display the result. 

SYS_EXIT  equ 1 

SYS_READ  equ 3 

SYS_WRITE equ 4 

STDIN     equ 0 

STDOUT    equ 1 

 

segment .data  

 

    msg1 db "Enter a digit ", 0xA,0xD  

    len1 equ $- msg1  

 

    msg2 db "Please enter a second digit", 0xA,0xD  

    len2 equ $- msg2  
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    msg3 db "The sum is: " 

    len3 equ $- msg3 

 

segment .bss 

 

    num1 resb 2  

    num2 resb 2  

    res resb 1     

 

section .text 

    global _start    ;must be declared for using gcc 

_start:    ;tell linker entry point 

    mov eax, SYS_WRITE          

    mov ebx, STDOUT          

    mov ecx, msg1          

    mov edx, len1  

    int 0x80                 

 

    mov eax, SYS_READ  

    mov ebx, STDIN   

    mov ecx, num1  

    mov edx, 2 

    int 0x80             

 

    mov eax, SYS_WRITE         

    mov ebx, STDOUT          

    mov ecx, msg2           

    mov edx, len2          

    int 0x80 

 

    mov eax, SYS_READ   

    mov ebx, STDIN   

    mov ecx, num2  

    mov edx, 2 

    int 0x80         

 

    mov eax, SYS_WRITE          
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    mov ebx, STDOUT          

    mov ecx, msg3           

    mov edx, len3          

    int 0x80 

 

    ; moving the first number to eax register and second number to ebx 

    ; and subtracting ascii '0' to convert it into a decimal number 

    mov eax, [number1] 

    sub eax, '0' 

    mov ebx, [number2] 

    sub ebx, '0' 

 

    ; add eax and ebx 

    add eax, ebx 

    ; add '0' to to convert the sum from decimal to ASCII 

    add eax, '0' 

 

    ; storing the sum in memory location res 

    mov [res], eax 

 

    ; print the sum  

    mov eax, SYS_WRITE         

    mov ebx, STDOUT 

    mov ecx, res          

    mov edx, 1         

    int 0x80 

exit:     

    mov eax, SYS_EXIT    

    xor ebx, ebx  

    int 0x80 

When the above code is compiled and executed, it produces the following result: 

Enter a digit: 

3 

Please enter a second digit: 

4 

The sum is: 
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7 

The program with hardcoded variables: 

section .text 

    global _start    ;must be declared for using gcc 

_start:    ;tell linker entry point 

 mov eax,'3' 

 sub     eax, '0' 

 mov  ebx, '4' 

 sub     ebx, '0' 

 add  eax, ebx 

 add eax, '0' 

 mov  [sum], eax 

 mov ecx,msg  

 mov edx, len 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov ecx,sum 

 mov edx, 1 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

 

section .data 

 msg db "The sum is:", 0xA,0xD  

 len equ $ - msg    

 segment .bss 

 sum resb 1 

When the above code is compiled and executed, it produces the following result: 

The sum is: 

7 
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The MUL/IMUL Instruction 

There are two instructions for multiplying binary data. The MUL (Multiply) instruction 

handles unsigned data and the IMUL (Integer Multiply) handles signed data. Both 
instructions affect the Carry and Overflow flag. 

Syntax 

The syntax for the MUL/IMUL instructions is as follows: 

MUL/IMUL multiplier 

Multiplicand in both cases will be in an accumulator, depending upon the size of the 

multiplicand and the multiplier and the generated product is also stored in two registers 

depending upon the size of the operands. Following section explains MUL instructions 

with three different cases: 

SN Scenarios 

1 When two bytes are multiplied - 

The multiplicand is in the AL register, and the multiplier is a byte in the memory 

or in another register. The product is in AX. High-order 8 bits of the product is 
stored in AH and the low-order 8 bits are stored in AL. 

 

2 When two one-word values are multiplied - 
 

The multiplicand should be in the AX register, and the multiplier is a word in 

memory or another register. For example, for an instruction like MUL DX, you 
must store the multiplier in DX and the multiplicand in AX. 

The resultant product is a doubleword, which will need two registers. The high-

order (leftmost) portion gets stored in DX and the lower-order (rightmost) 
portion gets stored in AX. 

 

3 When two doubleword values are multiplied - 
 

When two doubleword values are multiplied, the multiplicand should be in EAX 

and the multiplier is a doubleword value stored in memory or in another register. 

The product generated is stored in the EDX:EAX registers, i.e., the high order 32 

bits gets stored in the EDX register and the low order 32-bits are stored in the 
EAX register. 
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Example 

MOV AL, 10 

MOV DL, 25 

MUL DL 

... 

MOV DL, 0FFH ; DL= -1 

MOV AL, 0BEH ; AL = -66 

IMUL DL 

Example 

The following example multiplies 3 with 2, and displays the result: 

section .text 

    global _start    ;must be declared for using gcc 

_start:    ;tell linker entry point 

 

 mov al,'3' 

 sub     al, '0' 

 mov  bl, '2' 

 sub     bl, '0' 

 mul  bl 

 add al, '0' 

 mov  [res], al 

 mov ecx,msg  

 mov edx, len 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov ecx,res 

 mov edx, 1 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 
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 int 0x80 ;call kernel 

 

section .data 

msg db "The result is:", 0xA,0xD  

len equ $- msg    

segment .bss 

res resb 1 

When the above code is compiled and executed, it produces the following result: 

The result is: 

6 

The DIV/IDIV Instructions 

The division operation generates two elements - a quotient and a remainder. In case 

of multiplication, overflow does not occur because double-length registers are used to 

keep the product. However, in case of division, overflow may occur. The processor 
generates an interrupt if overflow occurs. 

The DIV (Divide) instruction is used for unsigned data and the IDIV (Integer Divide) is 
used for signed data. 

Syntax 

The format for the DIV/IDIV instruction: 

DIV/IDIV divisor 

The dividend is in an accumulator. Both the instructions can work with 8-bit, 16-bit or 

32-bit operands. The operation affects all six status flags. Following section explains 

three cases of division with different operand size: 

SN Scenarios 

1 When the divisor is 1 byte - 

 

The dividend is assumed to be in the AX register (16 bits). After division, the 
quotient goes to the AL register and the remainder goes to the AH register. 
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2 When the divisor is 1 word - 
 

The dividend is assumed to be 32 bits long and in the DX:AX registers. The high-

order 16 bits are in DX and the low-order 16 bits are in AX. After division, the 

16-bit quotient goes to the AX register and the 16-bit remainder goes to the DX 
register. 

 

3 When the divisor is doubleword - 

 

The dividend is assumed to be 64 bits long and in the EDX:EAX registers. The 

high-order 32 bits are in EDX and the low-order 32 bits are in EAX. After division, 

the 32-bit quotient goes to the EAX register and the 32-bit remainder goes to the 
EDX register. 

 

 

Example 

The following example divides 8 with 2. The dividend 8 is stored in the 16-bit AX 

register and the divisor 2 is stored in the 8-bit BL register. 

section .text 

    global _start    ;must be declared for using gcc 

_start:    ;tell linker entry point 

 mov ax,'8' 

 sub     ax, '0' 

 mov  bl, '2' 

 sub     bl, '0' 

 div  bl 

 add ax, '0' 

 mov  [res], ax 
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 mov ecx,msg  

 mov edx, len 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov ecx,res 

 mov edx, 1 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

 

section .data 

msg db "The result is:", 0xA,0xD  

len equ $- msg    

segment .bss 

res resb 1 

When the above code is compiled and executed, it produces the following result: 

The result is: 

4 
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The processor instruction set provides the instructions AND, OR, XOR, TEST, and NOT 

Boolean logic, which tests, sets, and clears the bits according to the need of the 

program. 

The format for these instructions: 

SN Instruction Format 

1 AND AND operand1, operand2 

2 OR OR operand1, operand2 

3 XOR XOR operand1, operand2 

4 TEST TEST operand1, operand2 

5 NOT NOT operand1 

 

The first operand in all the cases could be either in register or in memory. The second 

operand could be either in register/memory or an immediate (constant) value. However, 

memory-to-memory operations are not possible. These instructions compare or match 

bits of the operands and set the CF, OF, PF, SF and ZF flags. 

The AND Instruction 

The AND instruction is used for supporting logical expressions by performing bitwise AND 

operation. The bitwise AND operation returns 1, if the matching bits from both the 
operands are 1, otherwise it returns 0. For example: 

             Operand1:  0101 

             Operand2:  0011 

---------------------------- 

After AND -> Operand1: 0001 

The AND operation can be used for clearing one or more bits. For example, say the BL 

register contains 0011 1010. If you need to clear the high-order bits to zero, you AND it 
with 0FH. 

AND BL,   0FH   ; This sets BL to 0000 1010 

Let's take up another example. If you want to check whether a given number is odd or 

even, a simple test would be to check the least significant bit of the number. If this is 1, 
the number is odd, else the number is even. 

11.  Assembly ─ Logical Instructions 
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Assuming the number is in AL register, we can write: 

AND AL, 01H     ; ANDing with 0000 0001 

JZ    EVEN_NUMBER 

The following program illustrates this: 

Example 

section    .text 

   global _start               ;must be declared for using gcc 

_start:                        ;tell linker entry point 

    mov   ax,   8h           ;getting 8 in the ax  

    and   ax, 1              ;and ax with 1 

    jz    evnn 

    mov   eax, 4             ;system call number (sys_write) 

    mov   ebx, 1             ;file descriptor (stdout) 

    mov   ecx, odd_msg       ;message to write 

    mov   edx, len2          ;length of message 

    int   0x80               ;call kernel 

    jmp   outprog 

evnn:    

    mov   ah,  09h 

    mov   eax, 4             ;system call number (sys_write) 

    mov   ebx, 1             ;file descriptor (stdout) 

    mov   ecx, even_msg      ;message to write 

    mov   edx, len1          ;length of message 

    int   0x80               ;call kernel 

outprog: 

    mov   eax,1              ;system call number (sys_exit) 

    int   0x80               ;call kernel 

section   .data 

even_msg  db  'Even Number!' ;message showing even number 

len1  equ  $ - even_msg     

odd_msg db  'Odd Number!'    ;message showing odd number 

len2  equ  $ - odd_msg 

When the above code is compiled and executed, it produces the following result: 

Even Number! 
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Change the value in the ax register with an odd digit, like: 

mov  ax, 9h                  ; getting 9 in the ax 

The program would display: 

Odd Number! 

Similarly, to clear the entire register, you can AND it with 00H. 

The OR Instruction 

The OR instruction is used for supporting logical expression by performing bitwise OR 

operation. The bitwise OR operator returns 1, if the matching bits from either or both 
operands are one. It returns 0, if both the bits are zero. 

For example, 

             Operand1:     0101 

             Operand2:     0011 

---------------------------- 

After OR -> Operand1:    0111 

The OR operation can be used for setting one or more bits. For example, let us assume 

the AL register contains 0011 1010, you need to set the four low-order bits, you can OR 
it with a value 0000 1111, i.e., FH. 

OR BL, 0FH                   ; This sets BL to  0011 1111 

Example 

The following example demonstrates the OR instruction. Let us store the value 5 and 3 in 
the AL and the BL registers, respectively, then the instruction, 

OR AL, BL 

should store 7 in the AL register: 

section    .text 

    global _start            ;must be declared for using gcc 

_start:                      ;tell linker entry point 

    mov    al, 5             ;getting 5 in the al 

    mov    bl, 3             ;getting 3 in the bl 

    or     al, bl            ;or al and bl registers, result should be 7 

    add    al, byte '0'      ;converting decimal to ascii 

    mov    [result],  al 

    mov    eax, 4 

    mov    ebx, 1 
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    mov    ecx, result 

    mov    edx, 1 

    int    0x80 

     

outprog: 

    mov    eax,1             ;system call number (sys_exit) 

    int    0x80              ;call kernel 

section    .bss 

result resb 1 

When the above code is compiled and executed, it produces the following result: 

7 

The XOR Instruction 

The XOR instruction implements the bitwise XOR operation. The XOR operation sets the 

resultant bit to 1, if and only if the bits from the operands are different. If the bits from 
the operands are same (both 0 or both 1), the resultant bit is cleared to 0. 

For example, 

             Operand1:     0101 

             Operand2:     0011 

---------------------------- 

After XOR -> Operand1:    0110 

XORing an operand with itself changes the operand to 0. This is used to clear a register. 

XOR     EAX, EAX 

The TEST Instruction 

The TEST instruction works same as the AND operation, but unlike AND instruction, it 

does not change the first operand. So, if we need to check whether a number in a 

register is even or odd, we can also do this using the TEST instruction without changing 
the original number. 

TEST    AL, 01H 

JZ      EVEN_NUMBER 
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The NOT Instruction 

The NOT instruction implements the bitwise NOT operation. NOT operation reverses the 

bits in an operand. The operand could be either in a register or in the memory. 

For example, 

             Operand1:    0101 0011 

After NOT -> Operand1:    1010 1100 
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Conditional execution in assembly language is accomplished by several looping and 

branching instructions. These instructions can change the flow of control in a program. 

Conditional execution is observed in two scenarios: 

SN Conditional Instructions 

1 

Unconditional jump 

This is performed by the JMP instruction. Conditional execution often involves a 

transfer of control to the address of an instruction that does not follow the 

currently executing instruction. Transfer of control may be forward, to execute a 

new set of instructions or backward, to re-execute the same steps. 

2 

Conditional jump 

This is performed by a set of jump instructions j<condition> depending upon the 

condition. The conditional instructions transfer the control by breaking the 
sequential flow and they do it by changing the offset value in IP. 

 

Let us discuss the CMP instruction before discussing the conditional instructions. 

CMP Instruction 

The CMP instruction compares two operands. It is generally used in conditional 

execution. This instruction basically subtracts one operand from the other for comparing 

whether the operands are equal or not. It does not disturb the destination or source 
operands. It is used along with the conditional jump instruction for decision making. 

Syntax 

CMP destination, source 

CMP compares two numeric data fields. The destination operand could be either in 

register or in memory. The source operand could be a constant (immediate) data, 
register or memory. 

Example 

CMP DX, 00  ; Compare the DX value with zero 

JE  L7      ; If yes, then jump to label L7 

. 

. 

L7: ...   

12.  Assembly ─ Conditions 
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CMP is often used for comparing whether a counter value has reached the number of 
times a loop needs to be run. Consider the following typical condition: 

INC EDX 

CMP EDX, 10 ; Compares whether the counter has reached 10 

JLE LP1      ; If it is less than or equal to 10, then jump 

   ; to LP1 Unconditional Jump 

As mentioned earlier, this is performed by the JMP instruction. Conditional execution 

often involves a transfer of control to the address of an instruction that does not follow 

the currently executing instruction. Transfer of control may be forward, to execute a new 
set of instructions or backward, to re-execute the same steps. 

Syntax 

The JMP instruction provides a label name where the flow of control is transferred 
immediately. The syntax of the JMP instruction is: 

JMP label 

Example 

The following code snippet illustrates the JMP instruction: 

MOV  AX, 00    ; Initializing AX to 0 

MOV  BX, 00    ; Initializing BX to 0 

MOV  CX, 01    ; Initializing CX to 1 

L20: 

ADD  AX, 01    ; Increment AX 

ADD  BX, AX    ; Add AX to BX 

SHL  CX, 1     ; shift left CX, this in turn doubles the CX value 

JMP  L20       ; repeats the statements 

Conditional Jump 

If some specified condition is satisfied in conditional jump, the control flow is transferred 

to a target instruction. There are numerous conditional jump instructions depending 

upon the condition and data. 

Following are the conditional jump instructions used on signed data used for arithmetic 

operations: 

Instruction Description Flags tested 

JE/JZ Jump Equal or Jump Zero ZF 

JNE/JNZ Jump not Equal or Jump Not Zero ZF 
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JG/JNLE Jump Greater or Jump Not Less/Equal OF, SF, ZF 

JGE/JNL Jump Greater or Jump Not Less OF, SF 

JL/JNGE Jump Less or Jump Not Greater/Equal OF, SF 

JLE/JNG Jump Less/Equal or Jump Not Greater OF, SF, ZF 

 

Following are the conditional jump instructions used on unsigned data used for logical 

operations: 

Instruction Description Flags tested 

JE/JZ Jump Equal or Jump Zero ZF 

JNE/JNZ Jump not Equal or Jump Not Zero ZF 

JA/JNBE Jump Above or Jump Not Below/Equal CF, ZF 

JAE/JNB Jump Above/Equal or Jump Not Below CF 

JB/JNAE Jump Below or Jump Not Above/Equal CF 

JBE/JNA Jump Below/Equal or Jump Not Above AF, CF 

The following conditional jump instructions have special uses and check the value of 

flags: 

Instruction Description Flags tested 

JXCZ Jump if CX is Zero none 

JC Jump If Carry CF 

JNC Jump If No Carry CF 

JO Jump If Overflow OF 

JNO Jump If No Overflow OF 
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JP/JPE Jump Parity or Jump Parity Even PF 

JNP/JPO Jump No Parity or Jump Parity Odd PF 

JS Jump Sign (negative value) SF 

JNS Jump No Sign (positive value) SF 

 

The syntax for the J<condition> set of instructions: 

Example 

CMP AL, BL 

JE EQUAL 

CMP AL, BH 

JE EQUAL 

CMP AL, CL 

JE EQUAL 

NON_EQUAL: ... 

EQUAL: ... 

Example 

The following program displays the largest of three variables. The variables are double-

digit variables. The three variables num1, num2 and num3 have values 47, 72 and 31, 
respectively: 

section .text 

    global _start         ;must be declared for using gcc 

 

_start: ;tell linker entry point 

 mov   ecx, [num1] 

       cmp   ecx, [num2] 

       jg    check_third_num 

       mov   ecx, [num3] 

   check_third_num: 

       cmp   ecx, [num3] 

       jg    _exit 

       mov   ecx, [num3] 

   _exit: 
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        mov   [largest], ecx 

        mov   ecx,msg 

        mov   edx, len 

        mov   ebx,1 ;file descriptor (stdout) 

        mov   eax,4 ;system call number (sys_write) 

        int   0x80 ;call kernel 

        mov   ecx,largest 

        mov   edx, 2 

        mov   ebx,1 ;file descriptor (stdout) 

        mov   eax,4 ;system call number (sys_write) 

        int   0x80 ;call kernel 

     

        mov   eax, 1 

        int   80h 

 

section .data 

    msg db "The largest digit is: ", 0xA,0xD  

    len equ $- msg  

    num1 dd '47' 

    num2 dd '22' 

    num3 dd '31' 

 

segment .bss 

   largest resb 2   

When the above code is compiled and executed, it produces the following result: 

The largest digit is:  

47 
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The JMP instruction can be used for implementing loops. For example, the following code 
snippet can be used for executing the loop-body 10 times. 

MOV CL, 10 

L1: 

<LOOP-BODY> 

DEC CL 

JNZ L1 

The processor instruction set, however, includes a group of loop instructions for 

implementing iteration. The basic LOOP instruction has the following syntax: 

LOOP  label 

Where, label is the target label that identifies the target instruction as in the jump 

instructions. The LOOP instruction assumes that the ECX register contains the loop 

count. When the loop instruction is executed, the ECX register is decremented and the 

control jumps to the target label, until the ECX register value, i.e., the counter reaches 

the value zero. 

The above code snippet could be written as: 

mov ECX,10 

l1: 

<loop body> 

loop l1 

Example 

The following program prints the number 1 to 9 on the screen: 

section .text 

    global _start         ;must be declared for using gcc 

_start:                 ;tell linker entry point 

 mov ecx,10 

 mov eax, '1' 

  

l1: 

 mov [num], eax 

 mov eax, 4 

 mov ebx, 1 

13.  Assembly ─ Loops 
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 push ecx 

 mov ecx, num         

     mov edx, 1         

     int 0x80 

 mov eax, [num] 

 sub eax, '0' 

 inc eax 

 add eax, '0' 

 pop ecx 

 loop l1 

 mov eax,1       ;system call number (sys_exit) 

 int 0x80        ;call kernel 

section .bss 

num resb 1 

When the above code is compiled and executed, it produces the following result: 

123456789: 
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Numerical data is generally represented in binary system. Arithmetic instructions operate 

on binary data. When numbers are displayed on screen or entered from keyboard, they 

are in ASCII form. 

So far, we have converted this input data in ASCII form to binary for arithmetic 

calculations and converted the result back to binary. The following code shows this: 

section .text 

    global _start         ;must be declared for using gcc 

_start: ;tell linker entry point 

 mov eax,'3' 

 sub   eax, '0' 

 mov  ebx, '4' 

 sub   ebx, '0' 

 add  eax, ebx 

 add eax, '0' 

 mov  [sum], eax 

 mov ecx,msg  

 mov edx, len 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov ecx,sum 

 mov edx, 1 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

section .data 

msg db "The sum is:", 0xA,0xD  

len equ $ - msg    

segment .bss 

sum resb 1 
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When the above code is compiled and executed, it produces the following result: 

The sum is: 

7 

Such conversions, however, have an overhead, and assembly language programming 

allows processing numbers in a more efficient way, in the binary form. Decimal numbers 
can be represented in two forms: 

 ASCII form 

 BCD or Binary Coded Decimal form 

ASCII Representation 

In ASCII representation, decimal numbers are stored as string of ASCII characters. For 

example, the decimal value 1234 is stored as: 

31 32 33 34H 

Where, 31H is ASCII value for 1, 32H is ASCII value for 2, and so on. There are four 
instructions for processing numbers in ASCII representation: 

 AAA - ASCII Adjust After Addition 

 AAS - ASCII Adjust After Subtraction 

 AAM - ASCII Adjust After Multiplication 

 AAD - ASCII Adjust Before Division 

These instructions do not take any operands and assume the required operand to be in 
the AL register. 

The following example uses the AAS instruction to demonstrate the concept: 

section .text 

    global _start         ;must be declared for using gcc 

_start: ;tell linker entry point 

 sub     ah, ah 

 mov     al, '9' 

 sub     al, '3' 

 aas 

 or      al, 30h 

 mov     [res], ax 

  

 mov edx,len ;message length 

 mov ecx,msg ;message to write 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 
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 int 0x80 ;call kernel 

  

 mov edx,1 ;message length 

 mov ecx,res ;message to write 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

 

section .data 

msg db 'The Result is:',0xa  

len equ $ - msg    

section .bss 

res resb 1   

When the above code is compiled and executed, it produces the following result: 

The Result is: 

6 

BCD Representation 

There are two types of BCD representation: 

 Unpacked BCD representation 

 Packed BCD representation 

In unpacked BCD representation, each byte stores the binary equivalent of a decimal 
digit. For example, the number 1234 is stored as: 

01 02 03 04H 

There are two instructions for processing these numbers: 

 AAM - ASCII Adjust After Multiplication 

 AAD - ASCII Adjust Before Division 

The four ASCII adjust instructions, AAA, AAS, AAM, and AAD, can also be used with 

unpacked BCD representation. In packed BCD representation, each digit is stored using 

four bits. Two decimal digits are packed into a byte. For example, the number 1234 is 
stored as: 

12 34H 
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There are two instructions for processing these numbers: 

 DAA - Decimal Adjust After Addition 

 DAS - decimal Adjust After Subtraction 

There is no support for multiplication and division in packed BCD representation. 

Example 

The following program adds up two 5-digit decimal numbers and displays the sum. It 

uses the above concepts: 

section .text 

    global _start         ;must be declared for using gcc 

 

_start: ;tell linker entry point 

 

 mov     esi, 4  ;pointing to the rightmost digit 

 mov     ecx, 5  ;num of digits 

 clc 

add_loop:   

 mov  al, [num1 + esi] 

 adc  al, [num2 + esi] 

 aaa 

 pushf 

 or  al, 30h 

 popf 

 mov [sum + esi], al 

 dec esi 

 loop add_loop 

 mov edx,len ;message length 

 mov ecx,msg ;message to write 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

  

 mov edx,5 ;message length 

 mov ecx,sum ;message to write 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 
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 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

 

section .data 

msg db 'The Sum is:',0xa  

len equ $ - msg    

num1 db '12345' 

num2 db '23456' 

sum db '     ' 

When the above code is compiled and executed, it produces the following result: 

The Sum is: 

35801 

 

 



Assembly Programming 

59 

 

We have already used variable length strings in our previous examples. The variable 

length strings can have as many characters as required. Generally, we specify the length 

of the string by either of the two ways: 

 Explicitly storing string length 

 Using a sentinel character 

We can store the string length explicitly by using the $ location counter symbol that 

represents the current value of the location counter. In the following example: 

msg  db  'Hello, world!',0xa ;our dear string 

len  equ  $ - msg            ;length of our dear string 

$ points to the byte after the last character of the string variable msg. Therefore, $-msg 

gives the length of the string. We can also write 

msg db 'Hello, world!',0xa ;our dear string 

len equ 13                 ;length of our dear string 

Alternatively, you can store strings with a trailing sentinel character to delimit a string 

instead of storing the string length explicitly. The sentinel character should be a special 
character that does not appear within a string. 

For example: 

message DB 'I am loving it!', 0 

String Instructions 

Each string instruction may require a source operand, a destination operand or both. For 

32-bit segments, string instructions use ESI and EDI registers to point to the source and 

destination operands, respectively. 

For 16-bit segments, however, the SI and the DI registers are used to point to the 
source and destination, respectively. 

There are five basic instructions for processing strings. They are: 

 MOVS - This instruction moves 1 Byte, Word or Doubleword of data from 

memory location to another. 

 LODS - This instruction loads from memory. If the operand is of one byte, it is 

loaded into the AL register, if the operand is one word, it is loaded into the AX 

register and a doubleword is loaded into the EAX register. 

 STOS - This instruction stores data from register (AL, AX, or EAX) to memory. 

 CMPS - This instruction compares two data items in memory. Data could be of a 

byte size, word or doubleword. 

15.  Assembly ─Strings 
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 SCAS - This instruction compares the contents of a register (AL, AX or EAX) with 

the contents of an item in memory. 

Each of the above instruction has a byte, word, and doubleword version; and string 
instructions can be repeated by using a repetition prefix. 

These instructions use the ES:DI and DS:SI pair of registers, where DI and SI registers 

contain valid offset addresses that refers to bytes stored in memory. SI is normally 

associated with DS (data segment) and DI is always associated with ES (extra segment). 

The DS:SI (or ESI) and ES:DI (or EDI) registers point to the source and destination 

operands, respectively. The source operand is assumed to be at DS:SI (or ESI) and the 
destination operand at ES:DI (or EDI) in memory. 

For 16-bit addresses, the SI and DI registers are used, and for 32-bit addresses, the ESI 
and EDI registers are used. 

The following table provides various versions of string instructions and the assumed 
space of the operands. 

Basic 
Instruction 

Operands 
at 

Byte 
Operation 

Word 
Operation 

Double word 
Operation 

MOVS ES:DI, 
DS:EI 

MOVSB MOVSW MOVSD 

LODS AX, DS:SI LODSB LODSW LODSD 

STOS ES:DI, AX STOSB STOSW STOSD 

CMPS DS:SI, ES: 
DI 

CMPSB CMPSW CMPSD 

SCAS ES:DI, AX SCASB SCASW SCASD 

Repetition Prefixes 

The REP prefix, when set before a string instruction, for example - REP MOVSB, causes 

repetition of the instruction based on a counter placed at the CX register. REP executes 

the instruction, decreases CX by 1, and checks whether CX is zero. It repeats the 

instruction processing until CX is zero. 

The Direction Flag (DF) determines the direction of the operation. 

 Use CLD (Clear Direction Flag, DF = 0) to make the operation left to right. 

 Use STD (Set Direction Flag, DF = 1) to make the operation right to left. 

The REP prefix also has the following variations: 

 REP: it is the unconditional repeat. It repeats the operation until CX is zero. 
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 REPE or REPZ: It is conditional repeat. It repeats the operation while the zero flag 

indicates equal/zero. It stops when the ZF indicates not equal/zero or when CX is 
zero. 

 REPNE or REPNZ: It is also conditional repeat. It repeats the operation while the 

zero flag indicates not equal/zero. It stops when the ZF indicates equal/zero or 

when CX is decremented to zero. 
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We have already discussed that the data definition directives to the assembler are used 

for allocating storage for variables. The variable could also be initialized with some 

specific value. The initialized value could be specified in hexadecimal, decimal or binary 
form. 

For example, we can define a word variable ‘months’ in either of the following way: 

MONTHS DW 12 

MONTHS DW 0CH 

MONTHS DW 0110B 

The data definition directives can also be used for defining a one-dimensional array. Let 
us define a one-dimensional array of numbers. 

NUMBERS DW  34,  45,  56,  67,  75, 89 

The above definition declares an array of six words each initialized with the numbers 34, 

45, 56, 67, 75, 89. This allocates 2x6 = 12 bytes of consecutive memory space. The 

symbolic address of the first number will be NUMBERS and that of the second number 

will be NUMBERS + 2 and so on. 

Let us take up another example. You can define an array named inventory of size 8, and 
initialize all the values with zero, as: 

INVENTORY   DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

            DW  0 

Which can be abbreviated as: 

INVENTORY   DW  0, 0 , 0 , 0 , 0 , 0 , 0 , 0 

The TIMES directive can also be used for multiple initializations to the same value. Using 
TIMES, the INVENTORY array can be defined as: 

INVENTORY TIMES 8 DW 0 
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Example 

The following example demonstrates the above concepts by defining a 3-element array 

x, which stores three values: 2, 3 and 4. It adds the values in the array and displays the 
sum 9: 

section .text 

    global _start ;must be declared for linker (ld) 

_start:  

    

      mov  eax,3      ;number bytes to be summed  

      mov  ebx,0      ;EBX will store the sum 

      mov  ecx, x     ;ECX will point to the current element to be summed 

top:  add  ebx, [ecx] 

      add  ecx,1      ;move pointer to next element 

      dec  eax        ;decrement counter 

      jnz  top        ;if counter not 0, then loop again 

done:  

      add   ebx, '0' 

      mov  [sum], ebx ;done, store result in "sum" 

display: 

      mov  edx,1      ;message length 

      mov  ecx, sum   ;message to write 

      mov  ebx, 1     ;file descriptor (stdout) 

      mov  eax, 4     ;system call number (sys_write) 

      int  0x80       ;call kernel 

      mov  eax, 1     ;system call number (sys_exit) 

      int  0x80       ;call kernel 

 

section .data 

global x 

x:     

      db  2 

      db  4 

      db  3 

sum:  

      db  0 
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When the above code is compiled and executed, it produces the following result: 

9 
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Procedures or subroutines are very important in assembly language, as the assembly 

language programs tend to be large in size. Procedures are identified by a name. 

Following this name, the body of the procedure is described which performs a well-
defined job. End of the procedure is indicated by a return statement. 

Syntax 

Following is the syntax to define a procedure: 

proc_name: 

   procedure body 

   ... 

   ret 

The procedure is called from another function by using the CALL instruction. The CALL 

instruction should have the name of the called procedure as an argument as shown 
below: 

CALL proc_name 

The called procedure returns the control to the calling procedure by using the RET 
instruction. 

Example 

Let us write a very simple procedure named sum that adds the variables stored in the 

ECX and EDX register and returns the sum in the EAX register: 

section .text 

    global _start         ;must be declared for using gcc 

_start: ;tell linker entry point 

 mov ecx,'4' 

 sub   ecx, '0' 

 mov  edx, '5' 

 sub   edx, '0' 

 call  sum     ;call sum procedure 

 mov  [res], eax 

 mov ecx, msg  

 mov edx, len 

 mov ebx,1 ;file descriptor (stdout) 

 mov eax,4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

17.  Assembly ─ Procedures 
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 mov ecx, res 

 mov edx, 1 

 mov ebx, 1 ;file descriptor (stdout) 

 mov eax, 4 ;system call number (sys_write) 

 int 0x80 ;call kernel 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

sum: 

   mov     eax, ecx 

   add     eax, edx 

   add     eax, '0' 

   ret 

section .data 

msg db "The sum is:", 0xA,0xD  

len equ $- msg    

segment .bss 

res resb 1 

When the above code is compiled and executed, it produces the following result: 

The sum is: 

9 

Stacks Data Structure 

A stack is an array-like data structure in the memory in which data can be stored and 

removed from a location called the 'top' of the stack. The data that needs to be stored is 

'pushed' into the stack and data to be retrieved is 'popped' out from the stack. Stack is a 

LIFO data structure, i.e., the data stored first is retrieved last. 

Assembly language provides two instructions for stack operations: PUSH and POP. These 
instructions have syntaxes like: 

PUSH    operand 

POP     address/register 

The memory space reserved in the stack segment is used for implementing stack. The 

registers SS and ESP (or SP) are used for implementing the stack. The top of the stack, 

which points to the last data item inserted into the stack is pointed to by the SS:ESP 

register, where the SS register points to the beginning of the stack segment and the SP 
(or ESP) gives the offset into the stack segment. 
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The stack implementation has the following characteristics: 

 Only words or doublewords could be saved into the stack, not a byte. 

 The stack grows in the reverse direction, i.e., toward the lower memory address 

 The top of the stack points to the last item inserted in the stack; it points to the 

lower byte of the last word inserted. 

As we discussed about storing the values of the registers in the stack before using them 
for some use; it can be done in following way: 

; Save the AX and BX registers in the stack 

PUSH    AX 

PUSH    BX 

; Use the registers for other purpose 

MOV AX, VALUE1 

MOV  BX, VALUE2 

... 

MOV  VALUE1, AX 

MOV VALUE2, BX 

; Restore the original values 

POP AX 

POP BX 

Example 

The following program displays the entire ASCII character set. The main program calls a 
procedure named display, which displays the ASCII character set. 

section .text 

    global _start         ;must be declared for using gcc 

_start: ;tell linker entry point 

 call  display 

 mov eax,1 ;system call number (sys_exit) 

 int 0x80 ;call kernel 

display: 

 mov    ecx, 256 

next: 

 push    ecx 

 mov     eax, 4 

 mov     ebx, 1 

 mov     ecx, achar 

 mov     edx, 1 
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 int     80h 

 pop     ecx  

 mov dx, [achar] 

 cmp byte [achar], 0dh 

 inc byte [achar] 

 loop    next 

 ret 

section .data 

achar db '0'   

When the above code is compiled and executed, it produces the following result: 

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|} 

... 

... 
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A recursive procedure is one that calls itself. There are two kind of recursion: direct and 

indirect. In direct recursion, the procedure calls itself and in indirect recursion, the first 

procedure calls a second procedure, which in turn calls the first procedure. 

Recursion could be observed in numerous mathematical algorithms. For example, 

consider the case of calculating the factorial of a number. Factorial of a number is given 
by the equation: 

Fact (n) = n * fact (n-1) for n > 0 

For example: factorial of 5 is 1 x 2 x 3 x 4 x 5 = 5 x factorial of 4 and this can be a good 

example of showing a recursive procedure. Every recursive algorithm must have an 

ending condition, i.e., the recursive calling of the program should be stopped when a 

condition is fulfilled. In the case of factorial algorithm, the end condition is reached when 
n is 0. 

The following program shows how factorial n is implemented in assembly language. To 
keep the program simple, we will calculate factorial 3. 

section .text 

    global _start         ;must be declared for using gcc 

_start:    ;tell linker entry point 

 

    mov bx, 3       ;for calculating factorial 3 

    call  proc_fact 

    add   ax, 30h 

    mov  [fact], ax 

     

    mov   edx,len   ;message length 

    mov   ecx,msg   ;message to write 

    mov   ebx,1     ;file descriptor (stdout) 

    mov   eax,4     ;system call number (sys_write) 

    int   0x80      ;call kernel 

 

    mov   edx,1     ;message length 

    mov   ecx,fact  ;message to write 

    mov   ebx,1     ;file descriptor (stdout) 

    mov   eax,4     ;system call number (sys_write) 

    int   0x80      ;call kernel 
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    mov   eax,1     ;system call number (sys_exit) 

    int   0x80      ;call kernel 

proc_fact: 

    cmp   bl, 1 

    jg    do_calculation 

    mov   ax, 1 

    ret 

do_calculation: 

    dec   bl 

    call  proc_fact 

    inc   bl 

    mul   bl        ;ax = al * bl 

    ret 

 

section .data 

msg db 'Factorial 3 is:',0xa  

len equ $ - msg    

 

section .bss 

fact resb 1 

When the above code is compiled and executed, it produces the following result: 

Factorial 3 is: 

6 
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Writing a macro is another way of ensuring modular programming in assembly language. 

 A macro is a sequence of instructions, assigned by a name and could be used 
anywhere in the program. 

 In NASM, macros are defined with %macro and %endmacro directives. 

 The macro begins with the %macro directive and ends with the %endmacro 
directive. 

The Syntax for macro definition: 

%macro macro_name  number_of_params 

<macro body> 

%endmacro 

Where, number_of_params specifies the number parameters, macro_name specifies the 

name of the macro. 

The macro is invoked by using the macro name along with the necessary parameters. 

When you need to use some sequence of instructions many times in a program, you can 

put those instructions in a macro and use it instead of writing the instructions all the 
time. 

For example, a very common need for programs is to write a string of characters in the 

screen. For displaying a string of characters, you need the following sequence of 
instructions: 

mov edx,len ;message length 

mov ecx,msg ;message to write 

mov ebx,1       ;file descriptor (stdout) 

mov eax,4       ;system call number (sys_write) 

int 0x80        ;call kernel 

In the above example of displaying a character string, the registers EAX, EBX, ECX and 

EDX have been used by the INT 80H function call. So, each time you need to display on 

screen, you need to save these registers on the stack, invoke INT 80H and then restore 

the original value of the registers from the stack. So, it could be useful to write two 
macros for saving and restoring data. 

We have observed that, some instructions like IMUL, IDIV, INT, etc., need some of the 

information to be stored in some particular registers and even return values in some 

specific register(s). If the program was already using those registers for keeping 

important data, then the existing data from these registers should be saved in the stack 
and restored after the instruction is executed. 
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Example 

Following example shows defining and using macros: 

; A macro with two parameters 

; Implements the write system call 

   %macro write_string 2  

      mov   eax, 4 

      mov   ebx, 1 

      mov   ecx, %1 

      mov   edx, %2 

      int   80h 

   %endmacro 

  

section .text 

    global _start            ;must be declared for using gcc 

_start:       ;tell linker entry point 

 write_string msg1, len1                

 write_string msg2, len2     

 write_string msg3, len3    

 mov eax,1          ;system call number (sys_exit) 

 int 0x80           ;call kernel 

 

section .data 

msg1 db 'Hello, programmers!',0xA,0xD   

len1 equ $ - msg1    

msg2 db 'Welcome to the world of,', 0xA,0xD  

len2 equ $- msg2  

msg3 db 'Linux assembly programming! ' 

len3 equ $- msg3 

When the above code is compiled and executed, it produces the following result: 

Hello, programmers! 

Welcome to the world of, 

Linux assembly programming! 
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The system considers any input or output data as stream of bytes. There are three 
standard file streams: 

 Standard input (stdin), 

 Standard output (stdout), and 

 Standard error (stderr). 

File Descriptor 

A file descriptor is a 16-bit integer assigned to a file as a file id. When a new file is 

created or an existing file is opened, the file descriptor is used for accessing the file. 

File descriptor of the standard file streams - stdin, stdout and stderr are 0, 1 and 2, 

respectively. 

File Pointer 

A file pointer specifies the location for a subsequent read/write operation in the file in 

terms of bytes. Each file is considered as a sequence of bytes. Each open file is 

associated with a file pointer that specifies an offset in bytes, relative to the beginning of 

the file. When a file is opened, the file pointer is set to zero. 

File Handling System Calls 

The following table briefly describes the system calls related to file handling: 

%eax Name %ebx %ecx %edx 

2 sys_fork struct pt_regs - - 

3 sys_read unsigned int char * size_t 

4 sys_write unsigned int const char * size_t 

5 sys_open const char * int int 

6 sys_close unsigned int - - 

8 sys_creat const char * int - 

19 sys_lseek unsigned int off_t unsigned int 
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The steps required for using the system calls are same, as we discussed earlier: 

1. Put the system call number in the EAX register. 

2. Store the arguments to the system call in the registers EBX, ECX, etc. 

3. Call the relevant interrupt (80h). 

4. The result is usually returned in the EAX register. 

Creating and Opening a File 

For creating and opening a file, perform the following tasks: 

1. Put the system call sys_creat() number 8, in the EAX register 

2. Put the filename in the EBX register 

3. Put the file permissions in the ECX register 

The system call returns the file descriptor of the created file in the EAX register, in case 
of error, the error code is in the EAX register. 

Opening an Existing File 

For opening an existing file, perform the following tasks: 

1. Put the system call sys_open() number 5, in the EAX register. 

2. Put the filename in the EBX register. 

3. Put the file access mode in the ECX register. 

4. Put the file permissions in the EDX register. 

The system call returns the file descriptor of the created file in the EAX register, in case 

of error, the error code is in the EAX register. 

Among the file access modes, most commonly used are: read-only (0), write-only (1), 

and read-write (2). 

Reading from a File 

For reading from a file, perform the following tasks: 

1. Put the system call sys_read() number 3, in the EAX register. 

2. Put the file descriptor in the EBX register. 

3. Put the pointer to the input buffer in the ECX register. 

4. Put the buffer size, i.e., the number of bytes to read, in the EDX register. 

The system call returns the number of bytes read in the EAX register, in case of error, 
the error code is in the EAX register. 
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Writing to a File 

For writing to a file, perform the following tasks: 

1. Put the system call sys_write() number 4, in the EAX register. 

2. Put the file descriptor in the EBX register. 

3. Put the pointer to the output buffer in the ECX register. 

4. Put the buffer size, i.e., the number of bytes to write, in the EDX register. 

The system call returns the actual number of bytes written in the EAX register, in case of 
error, the error code is in the EAX register. 

Closing a File 

For closing a file, perform the following tasks: 

1. Put the system call sys_close() number 6, in the EAX register. 

2. Put the file descriptor in the EBX register. 

The system call returns, in case of error, the error code in the EAX register. 

Updating a File 

For updating a file, perform the following tasks: 

1. Put the system call sys_lseek () number 19, in the EAX register. 

2. Put the file descriptor in the EBX register. 

3. Put the offset value in the ECX register. 

4. Put the reference position for the offset in the EDX register. 

The reference position could be: 

 Beginning of file - value 0 

 Current position - value 1 

 End of file - value 2 

The system call returns, in case of error, the error code in the EAX register. 

Example 

The following program creates and opens a file named myfile.txt, and writes a text 

'Welcome to Tutorials Point' in this file. Next, the program reads from the file and stores 
the data into a buffer named info. Lastly, it displays the text as stored in info. 

section .text 

   global _start         ;must be declared for using gcc 

_start:   ;tell linker entry point 

;create the file 

    mov  eax, 8 
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    mov  ebx, file_name 

    mov  ecx, 0777      ;read, write and execute by all 

    int  0x80           ;call kernel 

    mov [fd_out], eax 

     

; write into the file 

    mov edx,len         ;number of bytes 

    mov ecx, msg        ;message to write 

    mov ebx, [fd_out]   ;file descriptor  

    mov eax,4           ;system call number (sys_write) 

    int 0x80            ;call kernel 

  

    ; close the file 

    mov eax, 6 

    mov ebx, [fd_out] 

     

; write the message indicating end of file write 

    mov eax, 4 

    mov ebx, 1 

    mov ecx, msg_done 

    mov edx, len_done 

    int  0x80 

     

;open the file for reading 

    mov eax, 5 

    mov ebx, file_name 

    mov ecx, 0          ;for read only access 

    mov edx, 0777       ;read, write and execute by all 

    int  0x80 

    mov  [fd_in], eax 

     

;read from file 

    mov eax, 3 

    mov ebx, [fd_in] 

    mov ecx, info 

    mov edx, 26 

    int 0x80 



Assembly Programming 

77 

 

     

; close the file 

    mov eax, 6 

    mov ebx, [fd_in] 

     

; print the info  

    mov eax, 4 

    mov ebx, 1 

    mov ecx, info 

    mov edx, 26 

    int 0x80 

        

    mov eax,1           ;system call number (sys_exit) 

    int 0x80            ;call kernel 

 

section .data 

file_name db 'myfile.txt' 

msg db 'Welcome to Tutorials Point' 

len equ  $-msg 

msg_done db 'Written to file', 0xa 

len_done equ $-msg_done 

 

section .bss 

fd_out resb 1 

fd_in  resb 1 

info resb  26 

When the above code is compiled and executed, it produces the following result: 

Written to file 

Welcome to Tutorials Point 
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The sys_brk() system call is provided by the kernel, to allocate memory without the 

need of moving it later. This call allocates memory right behind the application image in 

the memory. This system function allows you to set the highest available address in the 
data section. 

This system call takes one parameter, which is the highest memory address needed to 
be set. This value is stored in the EBX register. 

In case of any error, sys_brk() returns -1 or returns the negative error code itself. The 
following example demonstrates dynamic memory allocation. 

Example 

The following program allocates 16kb of memory using the sys_brk() system call: 

section .text 

    global _start          ;must be declared for using gcc 

_start:    ;tell linker entry point 

 

 mov eax, 45  ;sys_brk 

 xor ebx, ebx 

 int 80h 

 

 add eax, 16384  ;number of bytes to be reserved 

 mov ebx, eax 

 mov eax, 45  ;sys_brk 

 int 80h 

 cmp eax, 0 

 jl exit  ;exit, if error  

 mov edi, eax ;EDI = highest available address 

 sub edi, 4 ;pointing to the last DWORD   

 mov ecx, 4096 ;number of DWORDs allocated 

 xor eax, eax ;clear eax 

 std   ;backward 

 rep stosd  ;repete for entire allocated area 

 cld   ;put DF flag to normal state 

 

 mov eax, 4 

 mov ebx, 1 

21.  Assembly ─ Memory Management 
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 mov ecx, msg 

 mov edx, len 

 int 80h  ;print a message 

exit: 

 mov eax, 1 

 xor ebx, ebx 

 int 80h 

section .data 

msg     db "Allocated 16 kb of memory!", 10 

len     equ $ - msg 

When the above code is compiled and executed, it produces the following result: 

Allocated 16 kb of memory! 

 

 

 

 


